Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Infectious diseases are transmitted in several ways. Some of these infections may affect the brain or spinal cord directly. Generally, an infection is a disease that is caused by the invasion of a microorganism or virus.
A number of different pathogens (i.e., certain viruses, bacteria, protozoa, fungi, and prions) can cause infections that adversely affect the brain or spinal cord.
Although the brain and spinal cord are surrounded by tough membranes, enclosed in the bones of the skull and spinal vertebrae, and chemically isolated by the blood–brain barrier, they are very susceptible if compromised. Nerves tend to lie deep under the skin but can still become exposed to damage. Individual neurons, and the neural networks and nerves into which they form, are susceptible to electrochemical and structural disruption. Neuroregeneration may occur in the peripheral nervous system and thus overcome or work around injuries to some extent, but it is thought to be rare in the brain and spinal cord.
The specific causes of neurological problems vary, but can include genetic disorders, congenital abnormalities or disorders, infections, lifestyle or environmental health problems including malnutrition, and brain injury, spinal cord injury or nerve injury. The problem may start in another body system that interacts with the nervous system. For example, cerebrovascular disorders involve brain injury due to problems with the blood vessels (cardiovascular system) supplying the brain; autoimmune disorders involve damage caused by the body's own immune system; lysosomal storage diseases such as Niemann-Pick disease can lead to neurological deterioration. The National Institutes of Health recommend considering the evaluation of an underlying celiac disease in people with unexplained neurological symptoms, particularly peripheral neuropathy or ataxia.
In a substantial minority of cases of neurological symptoms, no neural cause can be identified using current testing procedures, and such "idiopathic" conditions can invite different theories about what is occurring.
People whose condition was caused by a recent viral infection should make a full recovery without treatment in a few months. Fine motor skills, such as handwriting, typically have to be practised in order to restore them to their former ability. In more serious cases, strokes, bleeding or infections may sometimes cause permanent symptoms.
A neurological disorder is any disorder of the nervous system. Structural, biochemical or electrical abnormalities in the brain, spinal cord or other nerves can result in a range of symptoms. Examples of symptoms include paralysis, muscle weakness, poor coordination, loss of sensation, seizures, confusion, pain and altered levels of consciousness. There are many recognized neurological disorders, some relatively common, but many rare. They may be assessed by neurological examination, and studied and treated within the specialities of neurology and clinical neuropsychology.
Interventions for neurological disorders include preventative measures, lifestyle changes, physiotherapy or other therapy, neurorehabilitation, pain management, medication, or operations performed by neurosurgeons. The World Health Organization estimated in 2006 that neurological disorders and their sequelae (direct consequences) affect as many as one billion people worldwide, and identified health inequalities and social stigma/discrimination as major factors contributing to the associated disability and suffering.
Post-viral cerebellar ataxia is caused by damage to or problems with the cerebellum. It is most common in children, especially those younger than age 3, and usually occurs several weeks following a viral infection. Viral infections that may cause it include the following: chickenpox, Coxsackie disease (viral infection also called hand-foot-and-mouth disease), Creutzfeldt–Jakob disease (a rare disease believed to be an infection that causes mental deterioration), Lyme disease (inflammatory bacterial disease spread by ticks), mycoplasma pneumonia (type of bacterial pneumonia), Epstein–Barr virus (a common human virus that belongs to the herpes family) and HIV.
Incidence of demyelinating diseases vary from disorder to disorder. Some conditions, such as Tabes dorsalis appear predominantly in males and begins in mid-life. Optic neuritis on the other hand, occurs preferentially in females typically between the ages of 30 and 35. Other conditions such as multiple sclerosis vary in prevalence depending on the country and population. This condition can appear in children as well as adults.
The role of prolonged cortical myelination in human evolution has been implicated as a contributing factor in some cases of demyelinating disease. Unlike other primates, humans exhibit a unique pattern of postpubertal myelination, which may contribute to the development of psychiatric disorders and neurodegenerative diseases that present in early adulthood and beyond. The extended period of cortical myelination in humans may allow greater opportunity for disruption in myelination, resulting in the onset of demyelinating disease. Furthermore, it has been noted that humans have significantly greater prefrontal white matter volume than other primate species, which implies greater myelin density. Increased myelin density in humans as a result of a prolonged myelination may therefore structure risk for myelin degeneration and dysfunction. Evolutionary considerations for the role of prolonged cortical myelination as a risk factor for demyelinating disease are particularly pertinent given that genetics and autoimmune deficiency hypotheses fail to explain many cases of demyelinating disease. As has been argued, diseases such as multiple sclerosis cannot be accounted for by autoimmune deficiency alone, but strongly imply the influence of flawed developmental processes in disease pathogenesis. Therefore, the role of the human-specific prolonged period of cortical myelination is an important evolutionary consideration in the pathogenesis of demyelinating disease.
Neuroinflammation is widely regarded as chronic, as opposed to acute, inflammation of the central nervous system. Acute inflammation usually follows injury to the central nervous system immediately, and is characterized by inflammatory molecules, endothelial cell activation, platelet deposition, and tissue edema. Chronic inflammation is the sustained activation of glial cells and recruitment of other immune cells into the brain. It is chronic inflammation that is typically associated with neurodegenerative diseases. Common causes of chronic neuroinflammation include:
- Toxic metabolites
- Autoimmunity
- Aging
- Microbes
- Viruses
- Traumatic brain injury
- Spinal cord injury
- Air pollution
- Passive smoke
Exercise is a promising mechanism of prevention and treatment for various diseases characterized by neuroinflammation. Aerobic exercise is used widely to reduce inflammation in the periphery. Exercise has been shown to decreases proliferation of microglia in the brain, decrease hippocampal expression of immune-related genes, and reduce expression of inflammatory cytokines such as TNF-α.
A clinically isolated syndrome (CIS) is a clinical situation of an individual's first neurological episode, caused by inflammation or demyelination of nerve tissue. An episode may be monofocal, in which symptoms present at a single site in the central nervous system, or multifocal, in which multiple sites exhibit symptoms. CIS with enough paraclinical evidence can be considered as a clinical stage of Multiple Sclerosis (MS). It can also be retrospectively diagnosed as a kind of MS when more evidence is available.
Brain lesions associated with a clinically isolated syndrome may be indicative of several neurological diseases, like multiple sclerosis (MS) or Neuromyelitis optica. In order for such a diagnosis, multiple sites in the central nervous system must present lesions, typically over multiple episodes, and for which no other diagnosis is likely. A clinically definitive diagnosis of MS is made once an MRI detects lesions in the brain, consistent with those typical of MS. Other diagnostics include cerebrospinal fluid analysis and evoked response testing.
Currently it is considered that the best predictor of future development of clinical multiple sclerosis is the number of T2 lesions visualized by magnetic resonance imaging during the CIS. It is normal to evaluate diagnostic criteria against the "time to conversion to definite".
In 2001, the International Panel on the Diagnosis of Multiple Sclerosis issued the McDonald criteria, a revision of the previous diagnostic procedures to detect MS, known as the Poser criteria. "While maintaining the basic requirements of dissemination in time and space, the McDonald criteria provided specific guidelines for using findings on MRI and cerebrospinal fluid analysis to provide evidence of the second attack in those individuals who have had a single demyelinating episode and thereby confirm the diagnosis more quickly." Further revisions were issued in 2005.
Granulomatous meningoencephalitis (GME) is an inflammatory disease of the central nervous system (CNS) of dogs and, rarely, cats. It is a form of meningoencephalitis. GME is likely second only to encephalitis caused by "canine distemper virus" as the most common cause of inflammatory disease of the canine CNS. The disease is more common in female toy dogs of young and middle age. It has a rapid onset. The lesions of GME exist mainly in the white matter of the cerebrum, brainstem, cerebellum, and spinal cord. The cause is only known to be noninfectious and is considered at this time to be idiopathic. Because lesions resemble those seen in allergic meningoencephalitis, GME is thought to have an immune-mediated cause, but it is also thought that the disease may be based on an abnormal response to an infectious agent. One study searched for viral DNA from "canine herpesvirus", "canine adenovirus", and "canine parvovirus" in brain tissue from dogs with GME, necrotizing meningoencephalitis, and necrotizing leukoencephalitis (see below for the latter two conditions), but failed to find any.
Many health conditions can cause autonomic neuropathy. Some common causes of autonomic neuropathy include:
- Diabetes, which is the most common cause of autonomic neuropathy, can gradually cause nerve damage throughout the body.
- Injury to nerves caused by surgery or radiation to the neck.
- Treatment with certain medications, including some drugs used in cancer chemotherapy.
- Abnormal protein buildup in organs (amyloidosis), which affects the organs and the nervous system.
- Other chronic illnesses, such as Parkinson's disease, multiple sclerosis and some types of dementia.
- Autonomic neuropathy may also be caused by an abnormal attack by the immune system that occurs as a result of some cancers (paraneoplastic syndrome).
- Certain infectious diseases. Some viruses and bacteria, such as botulism, Lyme disease and HIV, can cause autonomic neuropathy.
- Inherited disorders. Certain hereditary disorders can cause autonomic neuropathy.
- Autoimmune diseases, in which the immune system attacks and damages parts of the body, including the nerves. Examples include Sjogren's syndrome, systemic lupus erythematosus, rheumatoid arthritis and celiac disease. Guillain-Barre syndrome is an autoimmune disease that happens rapidly and can affect autonomic nerves.
Of the phenomena occurring in neurosarcoid, only facial nerve involvement is known to have a good prognosis and good response to treatment. Long-term treatment is usually necessary for all other phenomena. The mortality rate is estimated at 10%
Myelitis occurs due to various reasons such as infections. Direct infection by viruses, bacteria, mold, or parasites such as human immunodeficiency virus (HIV), human T-lymphotropic virus types I and II (HTLV-I/II), syphilis, lyme disease, and tuberculosis can cause myelitis but it can also be caused due to non-infectious or inflammatory pathway. Myelitis often follows after the infections or after vaccination. These phenomena can be explained by a theory of autoimmune attack which states that the autoimmune bodies attack its spinal cord in response to immune reaction.
The theory of autoimmune attack claims that a person with neuroimmunologic disorders have genetic predisposition to auto-immune disorder, and the environmental factors would trigger the disease. The specific genetics in myelitis is not completely understood. It is believed that the immune system response could be to viral, bacterial, fungal, or parasitic infection; however, it is not known why the immune system attacks itself. Especially, for immune system to cause inflammatory response anywhere in the central nervous system, the cells from immune system must pass through the blood brain barrier. In the case of myelitis, not only is the immune system dysfunctional, but the dysfunction also crosses this protective blood brain barrier to affect the spinal cord.
The American College of Rheumatology has outlined 19 syndromes that are seen in NPSLE. These syndromes encompass disorders of the central and peripheral nervous systems:
- Aseptic meningitis
- Cerebrovascular disease
- Demyelinating syndrome
- Headache
- Movement disorder
- Myelopathy
- Seizure disorders
- Acute confusional state
- Anxiety disorder
- Cognitive dysfunction
- Mood disorder
- Psychosis
- Acute inflammatory demyelinating polyradiculoneuropathy
- Autonomic disorder
- Mononeuropathy (single/multiplex)
- Myasthenia gravis
- Cranial neuropathy
- Plexopathy
- Polyneuropathy
Each of the 19 syndromes are also stand-alone diagnoses, which can occur with or without lupus.
The majority of cases involve the central nervous system (CNS), which consists of the brain and spinal cord. The CNS syndromes can be subcategorized as either focal or diffuse. The focal syndromes are neurological, while the diffuse syndromes are psychiatric in nature. The most common CNS syndromes are headache and mood disorder.
Though neuropsychiatric lupus is sometimes referred to as "CNS lupus", it can also affect the peripheral nervous system (PNS). Between 10-15% of people with NPSLE have PNS involvement. Mononeuropathy and polyneuropathy are the most common PNS syndromes.
The prognosis of dysautonomia depends on several factors; individuals with chronic, progressive, generalized dysautonomia in the setting of central nervous system degeneration such as Parkinson's disease or multiple system atrophy have a generally poorer long-term prognosis. Consequently, dysautonomia could be fatal due to pneumonia, acute respiratory failure, or sudden cardiopulmonary arrest.
Autonomic dysfunction symptoms such as orthostatic hypotension, gastroparesis, and gustatory sweating are more frequently identified in mortalities.
Neuromuscular disease is a very broad term that encompasses many diseases and ailments that impair the functioning of the muscles, either directly, being pathologies of the voluntary muscle, or indirectly, being pathologies of nerves or neuromuscular junctions.
Neuromuscular diseases are those that affect the muscles and/or their direct nervous system control, problems with central nervous control can cause either spasticity or some degree of paralysis (from both lower and upper motor neuron disorders), depending on the location and the nature of the problem. Some examples of central disorders include cerebrovascular accident, Parkinson's disease, multiple sclerosis, Huntington's disease and Creutzfeldt–Jakob disease. Spinal muscular atrophies are disorders of lower motor neuron while amyotrophic lateral sclerosis is a mixed upper and lower motor neuron condition.
Nervous system disease refers to a small class of medical conditions affecting the nervous system.
The Nervous System Diseases can be divided into two categories:
- Central nervous system disease in the CNS
- Peripheral neuropathy in the PNS
In terms of treatment for neuromuscular diseases (NMD), "exercise" might be a way of managing them, as NMD individuals would gain muscle strength. In a study aimed at results of exercise, in muscular dystrophy and Charcot-Marie-Tooth disease, the later benefited while the former did not show benefit; therefore, it depends on the disease Other management routes for NMD should be based on medicinal and surgical procedures, again depending on the underlying cause.
There are several possible mechanisms that underlie the nervous system manifestations of lupus. Specific syndromes may be vasculopathic, autoantibody-mediated, or inflammatory in nature.
There is evidence that the blood–brain barrier, which protects the central nervous system, is compromised in patients with NPSLE. As a result of this, autoantibodies are able to infiltrate the CNS and cause damage.
A hereditary CNS demyelinating disease is a demyelinating central nervous system disease that is primarily due to an inherited genetic condition. (This is in contrast to autoimmune demyelinating conditions, such as multiple sclerosis, or conditions such as central pontine myelinolysis that are associated with acute acquired insult.)
Examples include:
- Alexander disease
- Canavan disease
- Krabbe disease
- leukoencephalopathy with vanishing white matter
- megalencephalic leukoencephalopathy with subcortical cysts
- metachromatic leukodystrophy
- X-linked adrenoleukodystrophy
The effects of myoclonus in an individual can vary depending on the form and the overall health of the individual. In severe cases, particularly those indicating an underlying disorder in the brain or nerves, movement can be extremely distorted and limit ability to normally function, such as in eating, talking, and walking. In these cases, treatment that is usually effective, such as clonazepam and sodium valproate, may instead cause adverse reaction to the drug, including increased tolerance and a greater need for increase in dosage. However, the prognosis for more simple forms of myoclonus in otherwise healthy individuals may be neutral, as the disease may cause few to no difficulties. Other times the disease starts simply, in one region of the body, and then spreads.
CRPS can occur at any age with the average age at diagnosis being 42. It affects both men and women; however, CRPS is three times more frequent in females than males.
CRPS affects both adults and children, and the number of reported CRPS cases among adolescents and young adults has been increasing, with a recent observational study finding an incidence of 1.16/100,000 among children in Scotland.