Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
Low vitamin C intake and serum levels have been associated with greater cataract rates. However, use of supplements of vitamin C has not demonstrated benefit.
Cigarette smoking has been shown to double the rate of nuclear sclerotic cataracts and triple the rate of posterior subcapsular cataracts. Evidence is conflicting over the effect of alcohol. Some surveys have shown a link, but others which followed people over longer terms have not.
Most people with the disease need laser repairs to the retina, and about 60 per cent need further surgery.
In general, approximately one-third of congenital cataracts are a component of a more extensive syndrome or disease (e.g., cataract resulting from congenital rubella syndrome), one-third occur as an isolated inherited trait, and one-third result from undetermined causes. Metabolic diseases tend to be more commonly associated with bilateral cataracts.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.
Irvine–Gass syndrome, pseudophakic cystoid macular edema or postcataract CME is one of the most common causes of visual loss after cataract surgery. The syndrome is named in honor of S. Rodman Irvine and J. Donald M. Gass.
The incidence is more common in older types of cataract surgery, where postcataract CME could occur in 20–60% of patients, but with modern cataract surgery, incidence of Irvine–Gass syndrome have reduced significantly.
Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) this could occur as the surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. This is less common today with modern lens replacement techniques
Wagner's syndrome has for a long time been considered a synonym for Stickler's syndrome. However, since the gene that is responsible for Wagner disease (and Erosive Vitreoretinopathie) is known (2005), the confusion has ended. For Wagner disease is the Versican gene (VCAN) located at 5q14.3 is responsible.
For Stickler there are 4 genes are known to cause this syndrome: COL2A1 (75% of Stickler cases), COL11A1 (also Marshall syndrome), COL11A2 (non-ocular Stickler) and COL9A1 (recessive Stickler).
The gene involved helps regulate how the body makes collagen, a sort of chemical glue that holds tissues together in many parts of the body. This particular collagen gene only becomes active in the jelly-like material that fills the eyeball; in Wagner's disease this "vitreous" jelly grabs too tightly to the already weak retina and pulls it away.
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
The cause of this condition is not presently known. It appears to be inherited in an autosomal dominant fashion.
Zonular cataract and nystagmus, also referred as Nystagmus with congenital zonular cataract is a rare congenital disease associated with Nystagmus and zonular cataract of the eye.
According to recent research not a single theory is able to explain the cause fully. However current plausible theories include infection with "Toxoplasma gondii", Herpes simplex virus, Rubella, neurogenic causes, and autoimmune pathology.
Approximately 50% of all congenital cataract cases may have a genetic cause which is quite heterogeneous. It is known that different mutations in the same gene can cause similar cataract patterns, while the highly variable morphologies of cataracts within some families suggest that the same mutation in a single gene can lead to different phenotypes. More than 25 loci and genes on different chromosomes have been associated with congenital cataract. Mutations in distinct genes, which encode the main cytoplasmic proteins of human lens, have been associated with cataracts of various morphologies, including genes encoding crystallins (CRYA, CRYB, and CRYG), lens specific connexins (Cx43, Cx46, and Cx50), major intrinsic protein (MIP) or Aquaporin, cytoskeletal structural proteins, paired-like homeodomain transcription factor 3 (PITX3), avian musculoaponeurotic fibrosarcoma (MAF), and heat shock transcription factor 4 (HSF4).
Intraoperative floppy iris syndrome (IFIS) is a complication that may occur during cataract extraction in certain patients. This syndrome is characterized by a flaccid iris which billows in response to ordinary intraocular fluid currents, a propensity for this floppy iris to prolapse towards the area of cataract extraction during surgery, and progressive intraoperative pupil constriction despite standard procedures to prevent this.
IFIS has been associated with tamsulosin (e.g., Flomax), a medication widely prescribed for urinary symptoms associated with benign prostatic hyperplasia (BPH). Tamsulosin is a selective alpha blocker that works by relaxing the bladder and prostatic smooth muscle. As such, it also relaxes the iris dilator muscle by binding to its postsynaptic nerve endings. Even if a patient has only taken tamsulosin once in their life, that dose is enough to cause IFIS during cataract extraction indefinitely. Various alpha-blockers are associated with IFIS, but tamsulosin has a stronger association than the others.
A joint statement of two ophthalmologic societies states that "the other major class of drugs to treat BPH — 5-alpha reductase inhibitors — do not appear to cause IFIS to any significant degree." 5-ARIs include finasteride, a medication typically used as first line therapy for BPH and androgenic alopecia. The medication is also associated with cataract formation.
IFIS may also be associated with other causes of small pupil like synechiae, pseudoexfoliation and other medications (used for conditions such as glaucoma, diabetes and high blood pressure). IFIS does not usually cause significant changes in postoperative outcomes. Patients may experience more pain, a longer recovery period, and less improvement in visual acuity than a patient with an uncomplicated cataract removal.
The severity of the condition is not linked to the duration of tamsulosin intake.
Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.
Acorea or fibrous occlusion of the pupil, microphthalmia and cataracts are present in both eyes. Microcornea and iridocorneal dysgenesis also occur. The retina and optic disc are normal.
The cataract-microcornea syndrome is the association of congenital cataract and microcornea.
Terrier breeds are predisposed to lens luxation, and it is probably inherited in the Sealyham Terrier, Jack Russell Terrier, Wirehaired Fox Terrier, Rat Terrier, Teddy Roosevelt Terrier, Tibetan Terrier, Miniature Bull Terrier, Shar Pei, and Border Collie. The mode of inheritance in the Tibetan Terrier and Shar Pei is likely autosomal recessive. Labrador Retrievers and Australian Cattle Dogs are also predisposed.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Few studies have examined the prevalence of FCED on a large scale. First assessed in a clinical setting, Fuchs himself estimated the occurrence of dystrophia epithelialis corneae to be one in every 2000 patients; a rate that is likely reflective of those who progress to advanced disease. Cross-sectional studies suggest a relatively higher prevalence of disease in European countries relative to other areas of the world. Fuchs' dystrophy rarely affects individuals under 50 years of age.
Hypertropia may be either congenital or acquired, and misalignment is due to imbalance in extraocular muscle function. The superior rectus, inferior rectus, superior oblique, and inferior oblique muscles affect the vertical movement of the eyes. These muscles may be either paretic, restrictive (fibrosis) or overactive effect of the muscles. Congenital cases may have developmental abnormality due to abnormal muscle structure, usually muscle atrophy / hypertrophy or rarely, absence of the muscle and incorrect placement.
Specific & common causes include:
- Superior oblique Palsy / Congenital fourth nerve palsy
- Inferior oblique overaction
- Brown's syndrome
- Duane's retraction syndrome
- Double elevator palsy
- Fibrosis of rectus muscle in Graves Disease (most commonly inferior rectus is involved)
- Surgical trauma to the vertical muscles (e.g. during scleral buckling surgery or cataract surgery causing iatrogenic trauma to the vertical muscles).
Sudden onset hypertropia in a middle aged or elderly adult may be due to compression of the trochlear nerve and mass effect from a tumor, requiring urgent brain imaging using MRI to localise any space occupying lesion. It could also be due to infarction of blood vessels supplying the nerve, due to diabetes and atherosclerosis. In other instances it may be due to an abnormality of neuromuscular transmission, i.e., Myasthenia Gravis.
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
In veterinary practice, nuclear sclerosis is a consistent finding in dogs greater than six years old. Nuclear sclerosis appears as a bilateral bluish-grey haziness at the nucleus, or center of the lens, caused by an increase in the refractive index of that part of the lens due to its increased density. It is often confused with cataracts. The condition is differentiated from a cataract by its appearance and by shining a penlight into the eye. With nuclear sclerosis, a reflection from the tapetum will be seen, while a cataract will block reflection.
There is no treatment for this condition currently.
Nuclear sclerosis is an age-related change in the density of the crystalline lens nucleus that occurs in all older animals. It is caused by compression of older lens fibers in the nucleus by new fiber formation. The denser construction of the nucleus causes it to scatter light. Although nuclear sclerosis may describe a type of early cataract in human medicine, in veterinary medicine the term is also known as lenticular sclerosis and describes a bluish-grey haziness at the nucleus that usually does "not" affect vision, except for unusually dense cases. Immature senile cataract has to be differentiated with nuclear sclerosis while making its diagnosis.