Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The international debate regarding the relationship between CTS and repetitive motion in work is ongoing. The Occupational Safety and Health Administration (OSHA) has adopted rules and regulations regarding cumulative trauma disorders. Occupational risk factors of repetitive tasks, force, posture, and vibration have been cited.
The relationship between work and CTS is controversial; in many locations, workers diagnosed with carpal tunnel syndrome are entitled to time off and compensation.
Some speculate that carpal tunnel syndrome is provoked by repetitive movement and manipulating activities and that the exposure can be cumulative. It has also been stated that symptoms are commonly exacerbated by forceful and repetitive use of the hand and wrists in industrial occupations, but it is unclear as to whether this refers to pain (which may not be due to carpal tunnel syndrome) or the more typical numbness symptoms.
A review of available scientific data by the National Institute for Occupational Safety and Health (NIOSH) indicated that job tasks that involve highly repetitive manual acts or specific wrist postures were associated with incidents of CTS, but causation was not established, and the distinction from work-related arm pains that are not carpal tunnel syndrome was not clear. It has been proposed that repetitive use of the arm can affect the biomechanics of the upper limb or cause damage to tissues. It has also been proposed that postural and spinal assessment along with ergonomic assessments should be included in the overall determination of the condition. Addressing these factors has been found to improve comfort in some studies. A 2010 survey by NIOSH showed that 2/3 of the 5 million carpal tunnel cases in the US that year were related to work. Women have more work-related carpal tunnel syndrome than men.
Speculation that CTS is work-related is based on claims such as CTS being found mostly in the working adult population, though evidence is lacking for this. For instance, in one recent representative series of a consecutive experience, most patients were older and not working. Based on the claimed increased incidence in the workplace, arm use is implicated, but the weight of evidence suggests that this is an inherent, genetic, slowly but inevitably progressive idiopathic peripheral mononeuropathy.
Anything compromising the tunnel of the posterior tibial nerve proves significant in the risk of causing TTS. Neuropathy can occur in the lower limb through many modalities, some of which include obesity and inflammation around the joints. By association, this includes risk factors such as RA, compressed shoes, pregnancy, diabetes and thyroid diseases
Most people relieved of their carpal tunnel symptoms with conservative or surgical management find minimal residual or "nerve damage". Long-term chronic carpal tunnel syndrome (typically seen in the elderly) can result in permanent "nerve damage", i.e. irreversible numbness, muscle wasting, and weakness. Those that undergo a carpal tunnel release are nearly twice as likely as those not having surgery to develop trigger thumb in the months following the procedure.
While outcomes are generally good, certain factors can contribute to poorer results that have little to do with nerves, anatomy, or surgery type. One study showed that mental status parameters or alcohol use yields much poorer overall results of treatment.
Recurrence of carpal tunnel syndrome after successful surgery is rare.
People with diabetes mellitus are at higher risk for any kind of peripheral neuropathy, including ulnar nerve entrapments.
Cubital tunnel syndrome is more common in people who spend long periods of time with their elbows bent, such as when holding a telephone to the head. Flexing the elbow while the arm is pressed against a hard surface, such as leaning against the edge of a table, is a significant risk factor. The use of vibrating tools at work or other causes of repetitive activities increase the risk, including throwing a baseball.
Damage to or deformity of the elbow joint increases the risk of cubital tunnel syndrome. Additionally, people who have other nerve entrapments elsewhere in the arm and shoulder are at higher risk for ulnar nerve entrapment. There is some evidence that soft tissue compression of the nerve pathway in the shoulder by a bra strap over many years can cause symptoms of ulnar neuropathy, especially in very large-breasted women.
As stated earlier, musculoskeletal disorders can cost up to $15–$20 billion in direct costs or $45–$55 billion in indirect expenses. This is about $135 million a day Tests that confirm or correct TTS require expensive treatment options like x-rays, CT-scans, MRI and surgery. 3 former options for TTS detect and locate, while the latter is a form of treatment to decompress tibial nerve pressure Since surgery is the most common form of TTS treatment, high financial burden is placed upon those diagnosed with the rare syndrome.
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
Among the causes of ulnar neuropathy are the following-
Much more commonly, ulnar neuropathy is caused by overuse of the triceps muscle and repetitive stress combined with poor ergonomics. Overused and hypertonic triceps muscle causes inflammation in the tendon and adhesions with the connective tissue surrounding that tendon and muscle. These in turn impinge on or trap the ulnar nerve. Ulnar neuropathy resulting from repetitive stress is amenable to massage and can usually be fully reversed without cortisone or surgery.
Center for Occupational and Environmental Neurology , Baltimore, MD has this to say:
“Repetitive Strain Injuries (RSI) refers to many different diagnoses of the neck/shoulder, arm, and wrist/hand area usually associated with work-related ergonomic stressors. Other terms used for Repetitive Strain Injuries are overuse syndrome, musculoskeletal disorders, and cumulative trauma disorders. Some of the more common conditions under these headings include:
Cubital Tunnel Syndrome-compression of the ulnar nerve in the cubital tunnel at the elbow.”
People vary in their tendency to get MSDs. Gender is a factor with a higher rate in women than men. Obesity is also a factor, with overweight individuals having a higher risk of some MSDs, specifically lower back.
In regards to the pathophysiology of ulnar neuropathy:the axon, and myelin can be affected. Within the axon, fascicles to individual muscles could be involved, with subsequent motor unit loss and amplitude decrease. Conduction block means impaired transmission via a part of the nerve. Conduction block can mean myelin damage to the involved area, slowing of conduction or significant spreading out of the temporal profile of the response with axonal integrity is a hallmark of demyelination.
There is a growing consensus that psychosocial factors are another cause of some MSDs. Some theories for this causal relationship found by many researchers include increased muscle tension, increased blood and fluid pressure, reduction of growth functions, pain sensitivity reduction, pupil dilation, body remaining at heightened state of sensitivity. Although research findings are inconsistent at this stage, some of the workplace stressors found to be associated with MSDs in the workplace include high job demands, low social support, and overall job strain. Researchers have consistently identified causal relationships between job dissatisfaction and MSDs. For example, improving job satisfaction can reduce 17-69 per cent of work-related back disorders and improving job control can reduce 37-84 per cent of work-related wrist disorders.
Most patients diagnosed with cubital tunnel syndrome have advanced disease (atrophy, static numbness, weakness) that might reflect permanent nerve damage that will not recover after surgery. When diagnosed prior to atrophy, weakness or static numbness, the disease can be arrested with treatment. Mild and intermittent symptoms often resolve spontaneously.
Repetitive strain injury (RSI) and associative trauma orders are umbrella terms used to refer to several discrete conditions that can be associated with repetitive tasks, forceful exertions, vibrations, mechanical compression, or sustained/awkward positions. Examples of conditions that may sometimes be attributed to such causes include edema, tendinosis (or less often tendinitis), carpal tunnel syndrome, cubital tunnel syndrome, De Quervain syndrome, thoracic outlet syndrome, intersection syndrome, golfer's elbow (medial epicondylitis), tennis elbow (lateral epicondylitis), trigger finger (so-called stenosing tenosynovitis), radial tunnel syndrome, ulnar tunnel syndrome, and focal dystonia.
Since the 1970s there has been a worldwide increase in RSIs of the arms, hands, neck, and shoulder attributed to the widespread use of typewriters/computers in the workplace that require long periods of repetitive motions in a fixed posture.
Radial Tunnel Syndrome is caused by increased pressure on the radial nerve as it travels from the upper arm (the brachial plexus) to the hand and wrist.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
Injuries to the arm, forearm or wrist area can lead to various nerve disorders. One such disorder is median nerve palsy. The median nerve controls the majority of the muscles in the forearm. It controls abduction of the thumb, flexion of hand at wrist, flexion of digital phalanx of the fingers, is the sensory nerve for the first three fingers, etc. Because of this major role of the median nerve, it is also called the eye of the hand. If the median nerve is damaged, the ability to abduct and oppose the thumb may be lost due to paralysis of the thenar muscles. Various other symptoms can occur which may be repaired through surgery and tendon transfers. Tendon transfers have been very successful in restoring motor function and improving functional outcomes in patients with median nerve palsy.
A nerve may be compressed by prolonged or repeated external force, such as sitting with one's arm over the back of a chair (radial nerve), frequently resting one's elbows on a table (ulnar nerve), or an ill-fitting cast or brace on the leg (peroneal nerve). Part of the patient's body can cause the compression and the term "entrapment neuropathy" is used particularly in this situation. The offending structure may be a well-defined lesion such as a tumour (for example a lipoma, neurofibroma or metastasis), a ganglion cyst or a haematoma. Alternatively, there may be expansion of the tissues around a nerve in a space where there is little room for this to occur, as is often the case in carpal tunnel syndrome. This may be due to weight gain or peripheral oedema (especially in pregnancy), or to a specific condition such as acromegaly, hypothyroidism or scleroderma and psoriasis.
Some conditions cause nerves to be particularly susceptible to compression. These include diabetes, in which the blood supply to the nerves is already compromised, rendering the nerve more sensitive to minor degrees of compression. The genetic condition HNPP is a much rarer cause.
The theory is that the radial nerve becomes irritated and/or inflamed from friction caused by compression by muscles in the forearm.
Some speculate that Radial Tunnel Syndrome is a type of repetitive strain injury (RSI), but there is no detectable pathophysiology and even the existence of this disorder is questioned.
The term "radial tunnel syndrome" is used for compression of the posterior interosseous nerve, a division of the radial nerve, at the lateral intermuscular septum of arm, while "supinator syndrome" is used for compression at the arcade of Frohse.
The "radial tunnel" is the region from the humeroradial joint past the proximal origin of the supinator muscle. Some scientists believe the radial tunnel extends as far as the distal border of the supinator. The radial nerve is commonly compressed within a 5 cm region near the elbow, but it can be compressed anywhere along the forearm if the syndrome is caused by injury (e.g. a fracture that puts pressure on the radial nerve). The radial nerve provides sensation to the skin of posterior arm, posterior and lateral forearm and wrist, and the joints of the elbow, wrist and hand. The nerve also provides sensory branches that travel to the periosteum of the lateral epicondyle, the anterior radiohumeral joint, and the annular ligament. It provides motor function through innervation to most extensor muscles of the posterior arm and forearm. Therefore, it is extremely important in upper body extremity movement and can cause significant pain to patients presenting with radial tunnel syndrome. Unlike carpal tunnel syndrome, radial tunnel syndrome does not present tingling or numbness, since the posterior interosseous nerve mainly affects motor function.
This problem is often caused by: bone tumors, injury (specifically fractures of the forearm), noncancerous fatty tumors (lipomas), and inflammation of surrounding tissue.
Nerve compression syndrome or compression neuropathy, also known as entrapment neuropathy, is a medical condition caused by direct pressure on a nerve. It is known colloquially as a "trapped nerve", though this may also refer to nerve root compression (by a herniated disc, for example). Its symptoms include pain, tingling, numbness and muscle weakness. The symptoms affect just one particular part of the body, depending on which nerve is affected. Nerve conduction studies help to confirm the diagnosis. In some cases, surgery may help to relieve the pressure on the nerve but this does not always relieve all the symptoms. Nerve injury by a single episode of physical trauma is in one sense a compression neuropathy but is not usually included under this heading.
In terms of prognosis radial neuropathy is not necessarily permanent, though sometimes there could be partial loss of movement/sensation.Complications may be possible deformity of the hand in some individuals.
If the injury is axonal (the underlying nerve fiber itself is damaged) then full recovery may take months or years ( or could be permanent). EMG and nerve conduction studies are typically performed to diagnose the extent and distribution of the damage, and to help with prognosis for recovery.
There are many ways to acquire radial nerve palsy.
The term "Saturday Night Palsy" refers to an injury to the radial nerve in the spiral groove of the humerus caused while sleeping in a position that would under normal circumstances cause discomfort. It can occur when a person falls asleep while heavily medicated and/or under the influence of alcohol with the underside of the arm compressed by a bar edge, bench, chair back, or like object. Sleeping with the head resting on the arm can also cause radial nerve palsy.
Breaking the humerus and deep puncture wounds can also cause the condition.
Posterior interosseus palsy is distinguished from radial nerve palsy by the preservation of elbow extension.
Symptoms vary depending on the severity and location of the trauma; however, common symptoms include wrist drop (the inability to extend the wrist upward when the hand is palm down); numbness of the back of the hand and wrist, specifically over the first web space which is innervated by the radial nerve; and inability to voluntarily straighten the fingers or extend the thumb, which is performed by muscles of the extensor group, all of which are primarily innervated by the radial nerve. Loss of wrist extension is due to paralysis of the posterior compartment of forearm muscles; although the elbow extensors are also innervated by the radial nerve, their innervation is usually spared because the compression occurs below, distal, to the level of the axillary nerve, which innervates the long head of the triceps, and the upper branches of the radial nerve that innervate the remainder of the Triceps.
Radial nerve dysfunction is also known as radial neuropathy or radial mononeuropathy. It is a problem associated with the radial nerve resulting from injury consisting of acute trauma to the radial nerve. The damage has sensory consequences, as it interferes with the radial nerve's innervation of the skin of the posterior forearm, lateral three digits, and the dorsal surface of the side of the palm. The damage also has motor consequences, as it interferes with the radial nerve's innervation of the muscles associated with the extension at the elbow, wrist, and figers, as well the supination of the forearm. This type of injury can be difficult to localize, but relatively common, as many ordinary occurrences can lead to the injury and resulting mononeuropathy. One out of every ten patients suffering from radial nerve dysfunction do so because of a fractured humerus.
Ulnar tunnel syndrome, also known as Guyon's canal syndrome or Handlebar palsy, is caused by entrapment of the ulnar nerve in the Guyon canal as it passes through the wrist. Symptoms usually begin with a feeling of pins and needles in the ring and little fingers before progressing to a loss of sensation and/or impaired motor function of the intrinsic muscles of the hand which are innervated by the ulnar nerve. Ulnar tunnel syndrome is commonly seen in regular cyclists due to prolonged pressure of the Guyon's canal against bicycle handlebars. Another very common cause of sensory loss in the ring and pink finger is due to ulnar nerve entrapment at the Cubital Tunnel near the elbow, which is known as Cubital Tunnel Syndrome.
The mechanism of radial neuropathy is such that it can cause focal demyelination and axonal problems/degeneration (which is nerve fiber reaction to insult, and therefore axon death occurs). These would be caused via laceration or compression of the nerve in question.
Anterior interosseous syndrome or Kiloh-Nevin syndrome I is a medical condition in which damage to the anterior interosseous nerve (AIN), a motor branch of the median nerve, causes pain in the forearm and a characteristic weakness of the pincer movement of the thumb and index finger.
Most cases of AIN syndrome are due to a transient neuritis, although compression of the AIN can happen. Trauma to the median nerve have also been reported as a cause of AIN syndrome.
Although there is still controversy among upper extremity surgeons, AIN syndrome is now regarded as a neuritis (inflammation of the nerve) in most cases; this is similar to Parsonage–Turner syndrome. Although the exact etiology is unknown, there is evidence that it is caused by an immune mediated response.
Studies are limited, and no randomized controlled trials have been performed regarding the treatment of AIN syndrome. While the natural history of AIN syndrome is not fully understood, studies following patients who have been treated without surgery show that symptoms can resolve starting as late as one year after onset. Other retrospective studies have shown that there is no difference in outcome in surgically versus nonsurgically treated patients. Surgical decompression is rarely indicated in AIN syndrome. Indications for considering surgery include a known space-occupying lesion that is compressing the nerve (a mass) and persistent symptoms beyond 1 year of conservative treatment.
About 1.8 million people go to the emergency department each year due to hand injuries.