Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The risk of a repeat GTD is approximately 1 in 100, compared with approximately 1 in 1000 risk in the general population. Especially women whose hCG levels remain significantly elevated are at risk of developing a repeat GTD.
Most women with GTD can become pregnant again and can have children again. The risk of a further molar pregnancy is low. More than 98% of women who become pregnant following a molar pregnancy will not have a further hydatidiform mole or be at increased risk of complications.
In the past, it was seen as important not to get pregnant straight away after a GTD. Specialists recommended a waiting period of 6 months after the hCG levels become normal. Recently, this standpoint has been questioned. New medical data suggest that a significantly shorter waiting period after the hCG levels become normal is reasonable for approximately 97% of the patients with hydatidiform mole.
Since gestational choriocarcinoma (which arises from a hydatidiform mole) contains paternal DNA (and thus paternal antigens), it is exquisitely sensitive to chemotherapy. The cure rate, even for metastatic gestational choriocarcinoma, is around 90–95%.
At present, treatment with single-agent methotrexate is recommended for low-risk disease, while intense combination regimens including EMACO (etoposide, methotrexate, actinomycin D, cyclosphosphamide and vincristine (Oncovin) are recommended for intermediate or high-risk disease.
Hysterectomy (surgical removal of the uterus) can also be offered to patients > 40 years of age or those for whom sterilisation is not an obstacle. It may be required for those with severe infection and uncontrolled bleeding.
Choriocarcinoma arising in the testicle is rare, malignant and highly resistant to chemotherapy. The same is true of choriocarcinoma arising in the ovary. Testicular choriocarcinoma has the worst prognosis of all germ-cell cancers.
Choriocarcinoma of the placenta during pregnancy is preceded by:
- hydatidiform mole (50% of cases)
- spontaneous abortion (20% of cases)
- ectopic pregnancy (2% of cases)
- normal term pregnancy (20–30% of cases)
- hyperemesis gravidarum
Rarely, choriocarcinoma occurs in primary locations other than the placenta; very rarely, it occurs in testicles. Although trophoblastic components are common components of mixed germ cell tumors, pure choriocarcinoma of the adult testis is rare. Pure choriocarcinoma of the testis represents the most aggressive pathologic variant of germ cell tumors in adults, characteristically with early hematogenous and lymphatic metastatic spread. Because of early spread and inherent resistance to anticancer drugs, patients have poor prognosis. Elements of choriocarcinoma in a mixed testicular tumor have no prognostic importance.
Choriocarcinomas can also occur in the ovaries.
Being pregnant decreases the risk of relapse in multiple sclerosis; however, during the first months after delivery the risk increases. Overall, pregnancy does not seem to influence long-term disability. Multiple sclerosis does not increase the risk of congenital abnormality or miscarriage.
Trophoblastic neoplasms derive from trophoblastic tissue. Examples include:
- Choriocarcinoma
- Hydatidiform mole
More than 80% of hydatidiform moles are benign. The outcome after treatment is usually excellent. Close follow-up is essential. Highly effective means of contraception are recommended to avoid pregnancy for at least 6 to 12 months.
In 10 to 15% of cases, hydatidiform moles may develop into invasive moles. This condition is named "persistent trophoblastic disease" (PTD). The moles may intrude so far into the uterine wall that hemorrhage or other complications develop. It is for this reason that a post-operative full abdominal and chest x-ray will often be requested.
In 2 to 3% of cases, hydatidiform moles may develop into choriocarcinoma, which is a malignant, rapidly growing, and metastatic (spreading) form of cancer. Despite these factors which normally indicate a poor prognosis, the rate of cure after treatment with chemotherapy is high.
Over 90% of women with malignant, non-spreading cancer are able to survive and retain their ability to conceive and bear children. In those with metastatic (spreading) cancer, remission remains at 75 to 85%, although their childbearing ability is usually lost.
Pregnancy does not have an adverse effect on the course of Behçet's disease and may possibly ameliorate its course. Still, there is a substantial variability in clinical course between patients and even for different pregnancies in the same patient. Also, the other way around, Behçet's disease confers an increased risk of pregnancy complications, miscarriage and Cesarean section.
A placental disease is any disease, disorder, or pathology of the placenta. The article also covers placentation abnormalities, which is often used synonymously for placental disease.
The cause of this condition is not completely understood. Potential risk factors may include defects in the egg, abnormalities within the uterus, or nutritional deficiencies. Women under 20 or over 40 years of age have a higher risk. Other risk factors include diets low in protein, folic acid, and carotene. The diploid set of sperm-only DNA means that all chromosomes have sperm-patterned methylation suppression of genes. This leads to overgrowth of the syncytiotrophoblast whereas dual egg-patterned methylation leads to a devotion of resources to the embryo, with an underdeveloped syncytiotrophoblast. This is considered to be the result of evolutionary competition with male genes driving for high investment into the fetus versus female genes driving for resource restriction to maximise the number of children.
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
A chorangioma is a non-neoplastic, hamartoma-like growth in the placenta consisting of blood vessels.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
Microchimerism occurs in most pairs of twins in cattle. In cattle (and other bovines), the placentae of fraternal twins usually fuse and the twins share blood circulation, resulting in exchange of cell lines. If the twins are a male-female pair, the male hormones from the bull calf have the effect of partially masculinising the heifer (female), creating a "martin heifer" or "freemartin". Freemartins appear female, but are infertile and so cannot be used for breeding or dairy production. Microchimerism provides a method of diagnosing the condition, because male genetic material can be detected in a blood sample.
In humans (and perhaps in all placentals), the most common form is fetomaternal microchimerism (also known as "fetal cell microchimerism" or "fetal chimerism") whereby cells from a fetus pass through the placenta and establish cell lineages within the mother. Fetal cells have been documented to persist and multiply in the mother for several decades. The exact phenotype of these cells is unknown, although several different cell types have been identified, such as various immune lineages, mesenchymal stem cells, and placental-derived cells. A 2012 study at the Fred Hutchinson Cancer Research Center, Seattle, has detected cells with the Y chromosome in multiple areas of the brains of deceased women.
Fetomaternal microchimerism occurs during pregnancy and shortly after giving birth for most women. However, not all women who have had children contain fetal cells. Studies suggest that fetomaternal microchimerism could be influenced by killer-cell immunoglobin-like (KIR) ligands. Lymphocytes also influence the development of persisting fetomaternal microchimerism since natural killer cells compose about 70% of lymphocytes in the first trimester of pregnancy. KIR patterns on maternal natural killer cells of the mother and KIR ligands on the fetal cells could have an effect on fetomaternal microchimerism. In one study, mothers with KIR2DS1 exhibited higher levels of fetomaternal microchimerism compared to mothers who were negative for this activating KIR.
The potential health consequences of these cells are unknown. One hypothesis is that these fetal cells might trigger a graft-versus-host reaction leading to autoimmune disease. This offers a potential explanation for why many autoimmune diseases are more prevalent in middle-aged women. Another hypothesis is that fetal cells home to injured or diseased maternal tissue where they act as stem cells and participate in repair. It is also possible that the fetal cells are merely innocent bystanders and have no effect on maternal health.
After giving birth, about 50–75% of women carry fetal immune cell lines. Maternal immune cells are also found in the offspring yielding in maternal→fetal microchimerism, though this phenomenon is about half as frequent as the former.
Microchimerism had also been shown to exist after blood transfusions to a severely immunocompromised population of patients who suffered trauma.
Other possible sources of microchimerism include gestation, an individual's older sibling, twin sibling, or vanished twin, with the cells being received in utero. Fetal-maternal microchimerism is especially prevalent after abortion or miscarriage. It is hypothesized that unprotected intercourse with ejaculation may be another source of microchimerism.
Passive smoking is associated with many risks to children, including, sudden infant death syndrome (SIDS), asthma, lung infections, impaired respiratory function and slowed lung growth, Crohn's disease, learning difficulties and neurobehavioral effects, an increase in tooth decay, and an increased risk of middle ear infections.
Small chorangiomas are not treated. Large chorangioma can be treated several ways, including chemical ablation and laser coagulation.
Sudden infant death syndrome (SIDS) is the sudden death of an infant that is unexplainable by the infant's history. The death also remains unexplainable upon autopsy. Infants exposed to smoke, both during pregnancy and after birth, are found to be more at risk of SIDS due to the increased levels of nicotine often found in SIDS cases. Infants exposed to smoke during pregnancy are up to three times more likely to die of SIDS that children born to non-smoking mothers.
AS has a reported incidence of 25% of D&Cs performed 1–4 weeks post-partum, up to 30.9% of D&Cs performed for missed miscarriages and 6.4% of D&Cs performed for incomplete miscarriages. In another study, 40% of patients who underwent repeated D&C for retained products of conception after missed miscarriage or retained placenta developed AS.
In the case of missed miscarriages, the time period between fetal demise and curettage may increase the likelihood of adhesion formation due to fibroblastic activity of the remaining tissue.
The risk of AS also increases with the number of procedures: one study estimated the risk to be 16% after one D&C and 32% after 3 or more D&Cs. However, a single curettage often underlies the condition.
In an attempts to estimate the prevalence of AS in the general population, it was found in 1.5% of women undergoing hysterosalpingography HSG, and between 5 and 39% of women with recurrent miscarriage.
After miscarriage, a review estimated the prevalence of AS to be approximately 20% (95% confidence interval: 13% to 28%).
The following have been identified as risk factors for placenta previa:
- Previous placenta previa (recurrence rate 4–8%), caesarean delivery, myomectomy or endometrium damage caused by D&C.
- Women who are younger than 20 are at higher risk and women older than 35 are at increasing risk as they get older.
- Alcohol use during pregnancy was previous listed as a risk factor, but is discredited by this article.
- Women who have had previous pregnancies ( multiparity ), especially a large number of closely spaced pregnancies, are at higher risk due to uterine damage.
- Smoking during pregnancy; cocaine use during pregnancy
- Women with a large placentae from twins or erythroblastosis are at higher risk.
- Race is a controversial risk factor, with some studies finding that people from Asia and Africa are at higher risk and others finding no difference.
- Placental pathology (Vellamentous insertion, succinturiate lobes, bipartite i.e. bilobed placenta etc.)
- Baby is in an unusual position: breech (buttocks first) or transverse (lying horizontally across the womb).
Placenta previa is itself a risk factor of placenta accreta.
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
Most pregnancies that are diagnosed with confined placental mosaicism continue to term with no complications and the children develop normally.
However, some pregnancies with CPM experience prenatal or perinatal complications. The pregnancy loss rate in pregnancies with confined placental mosaicism, diagnosed by chorionic villus sampling, is higher than among pregnancies without placental mosaicism. It may be that sometimes the presence of significant numbers of abnormal cells in the placenta interferes with proper placental function. An impaired placenta cannot support the pregnancy and this may lead to the loss of a chromosomally normal baby. On the other hand, an apparently normal diploid fetus may experience problems with growth or development due to the effects of uniparental disomy (UPD). Intrauterine growth restriction (IUGR) has been reported in a number of CPM cases. In follow-up studies adequate postnatal catch-up growth has been demonstrated, which may suggest a placental cause of the IUGR.
When predicting the likely effects (if any) of CPM detected in the first trimester, several potentially interactive factors may be playing a role, including:
- "Origin of error:" Somatic errors are associated with lower levels of trisomy in the placenta and are expected usually to involve only one cell line (i.e.: the trophoblast cells or the villus stroma cells). Somatic errors are thus less likely than meiotic errors to be associated with either ultrasound abnormalities, growth problems or detectable levels of trisomy in small samples of prenatal CVS. Currently, there is no evidence that somatic errors, which lead to confined placental trisomy, are of any clinical consequence. Errors of meiotic origin are correlated with higher levels of trisomy in placental tissues and may be associated with adverse pregnancy outcome. The cell type in which the abnormality is seen is also an important factor in determining the risk of fetal involvement. The villus stroma or mesenchymal core is more likely than the cytotrophoblast to be reflective of the fetal genotype.
- "Level of mosaicism:" There is a correlation between a high number of aneuploid cells detected at CVS with poor pregnancy progress. This includes an association between high levels of abnormal cells in placental tissue and concerns with the growth of the baby. However, it is not accurate to use these associations to try to predict pregnancy outcome based on the percent of trisomic cells in a first trimester CVS result.
- "Specific chromosomes:" The influence of CPM on fetal growth is chromosome specific. Certain chromosomes carry imprinted genes involved in growth or placental function, which may contribute to impaired pregnancy progress when CPM is detected. Different chromosomes are observed at different frequencies depending on the type of CPM observed. The pregnancy outcome is strongly chromosome specific. The most frequently seen trisomic cells in confined placental mosaicism involve chromosomes 2, 3, 7, 8 and 16. The next frequently involved are 9, 13, 15, 18, 20 and 22. It has been observed that CPM involving the sex chromosomes usually has no adverse effects on fetal development. The common autosomal trisomies (21, 18, 13) made up a smaller number of cases of mosaicism detected on CVS, but were more often confirmed in fetal tissue (19%). On the other hand, the uncommon autosomal trisomies accounted for a greater number of placental mosaicism cases, but were less often confirmed in fetal tissue (3.2%). When CPM is detected on CVS involving certain chromosomes which are known or suspected to carry imprinted genes, molecular investigations should be performed to exclude fetal UPD. We will explore chromosome specific cases in the chromosome specific section.
- "Type of chromosome abnormality:" The factor that had the highest predictive value as to whether the fetus was affected or not was the type of chromosome abnormality. Marker chromosomes were more often confirmed in the fetus than trisomies. For example, of 28 cases of mosaic polyploidy detected on CVS, fetal mosaicism was confirmed in only one case. This is compared to marker chromosomes detected on CVS, in which mosaicism was confirmed in 1/4 of the fetuses.
It is associated with gestational diabetes, smoking and high altitude.
Placenta previa occurs approximately one of every 200 births. It has been suggested that incidence of placenta previa is increasing due to increased rate of Caesarian section.
Perinatal mortality rate of placenta previa is 3-4 times higher than normal pregnancies.
The reported incidence of placenta accreta has increased from approximately 0.8 per 1000 deliveries in the 1980s to 3 per 1000 deliveries in the past decade.
Incidence has been increasing with increased rates of Caesarean deliveries, with rates of 1 in 4,027 pregnancies in the 1970s, 1 in 2,510 in the 1980s, and 1 in 533 for 1982–2002. In 2002, ACOG estimated that incidence has increased 10-fold over the past 50 years. The risk of placenta accreta in future deliveries after Caesarian section is 0.4-0.8%. For patients with placenta previa, risk increases with number of previous Caesarean sections, with rates of 3%, 11%, 40%, 61%, and 67% for the first, second, third, fourth, and fifth or greater number of Caesarean sections.