Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some studies in Australia, Brazil and Germany pointed to alcohol-containing mouthwashes as also being potential causes. The claim was that constant exposure to these alcohol-containing rinses, even in the absence of smoking and drinking, leads to significant increases in the development of oral cancer. However, studies conducted in 1985, 1995, and 2003 summarize that alcohol-containing mouth rinses are not associated with oral cancer. In a March 2009 brief, the American Dental Association said "the available evidence does not support a connection between oral cancer and alcohol-containing mouthrinse". A 2008 study suggests that acetaldehyde (a breakdown product of alcohol) is implicated in oral cancer, but this study specifically focused on abusers of alcohol and made no reference to mouthwash. Any connection between oral cancer and mouthwash is tenuous without further investigation.
In a study of Europeans, smoking and other tobacco use was associated with about 75 percent of oral cancer cases, caused by irritation of the mucous membranes of the mouth from smoke and heat of cigarettes, cigars, and pipes. Tobacco contains over 60 known carcinogens, and the combustion of it, and by-products from this process, is the primary mode of involvement. Use of chewing tobacco or snuff causes irritation from direct contact with the mucous membranes.
Tobacco use in any form by itself, and even more so in combination with heavy alcohol consumption, continues to be an important risk factor for oral cancer. However, due to the current trends in the spread of HPV16, as of early 2011 the virus is now considered the primary causative factor in 63% of newly diagnosed patients.
People with HPV-mediated oropharyngeal cancer tend to have higher survival rates. The prognosis for people with oropharyngeal cancer depends on the age and health of the person and the stage of the disease. It is important for people with oropharyngeal cancer to have follow-up exams for the rest of their lives, as cancer can occur in nearby areas. In addition, it is important to eliminate risk factors such as smoking and drinking alcohol, which increase the risk for second cancers.
The risk factors that can increase the risk of developing oropharyngeal cancer are:
- Smoking and chewing tobacco
- Heavy alcohol use
- A diet low in fruits and vegetables
- Chewing betel quid, a stimulant commonly used in parts of Asia
- Mucosal infection with human papilloma virus (HPV) (HPV-mediated oropharyngeal cancer)
- HPV infection
- Plummer-Vinson syndrome
- Poor nutrition
- Asbestos exposure
Certain genetic changes including: P53 mutation and CDKN2A (p16) mutations.
High-risk lesions:
- Erythroplakia
- Speckled erythroplakia
- Chronic hyperplastic candidiasis
Medium-risk lesions:
- Oral submucosal fibrosis
- Syphilitic glossitis
- Sideropenic dysphagia (or Paterson-Kelly-Brown syndrome)
Low-risk lesions:
- Oral lichen planus
- Discoid lupus erythematosus
- Discoid keratosis congenita
Around 75% of cases are caused by alcohol and tobacco use.
Tobacco smoke is one of the main risk factors for head and neck cancer and one of the most carcinogenic compounds in tobacco smoke is acrylonitrile. (See Tobacco smoking). Acrylonitrile appears to indirectly cause DNA damage by increasing oxidative stress, leading to increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG) and formamidopyrimidine in DNA (see image). Both 8-oxo-dG and formamidopyrimidine are mutagenic. DNA glycosylase NEIL1 prevents mutagenesis by 8-oxo-dG and removes formamidopyrimidines from DNA.
However, cigarette smokers have a lifetime increased risk for head and neck cancers that is 5- to 25-fold increased over the general population.
The ex-smoker's risk for squamous cell cancer of the head and neck begins to approach the risk in the general population twenty years after smoking cessation. The high prevalence of tobacco and alcohol use worldwide and the high association of these cancers with these substances makes them ideal targets for enhanced cancer prevention.
Smokeless tobacco is cause of oral and pharyngeal cancers (oropharyngeal cancer). Cigar smoking is an important risk factor for oral cancers as well.
Other environmental carcinogens suspected of being potential causes of head and neck cancer include occupational exposures such as nickel refining, exposure to textile fibers, and woodworking. Use of marijuana, especially while younger, is linked to an increase in squamous-cell carcinoma cases while other studies suggest use is not shown to be associated with oral squamous cell carcinoma, or associated with decreased squamous cell carcinoma.
Factors that contribute to the development of hypopharyngeal cancer include:
- Smoking
- Chewing tobacco
- Heavy alcohol use
- Poor diet
Smoking, like lung cancer, can cause hypopharyngeal cancer because it contains carcinogens that alter the DNA or RNA in a dividing cell. These alterations may change a normal DNA sequence to an oncogene, a gene that causes cancer after exposure to a carcinogen.
Squamous cells, a type of cell that lines hollow organs like the throat, mouth, lungs, and outer layer of skin, are particularly vulnerable when exposed to cigarette smoke.
Chewing tobacco can have the same effects as smoking and is also linked to hypopharyngeal cancer. The chewing tobacco is placed into the mouth, leaving it exposed to enzymes, like amylase, which partly digests the carcinogenic material. Saliva is swallowed, along with the cancer-promoting material, which passes through the hypopharynx on its way to the esophagus.
Heavy alcohol use is linked to Hypopharyngeal Cancer as well. Alcohol damages the lining of the hypopharynx, increasing the amount of chemicals that are allowed to seep into the underlying membranes. Heavy alcohol use is also associated with nutritional deficiencies.
A disease called Plummer-Vinson syndrome, a genetic disorder that causes a long-term iron deficiency, may also lead to Hypopharyngeal Cancer. Other factors like a deficiency in certain vitamins also appear to contribute to this type of cancer.
Immunotherapy with immune checkpoint inhibitors is being investigated in head and neck cancers.
Symptoms of Hypopharyngeal Cancer include:
- Swollen lymph nodes in the neck (first sign of a problem in half of all patients)
- Sore throat in one location that persists after treatment
- Pain that radiates from the throat to the ears
- Difficult or painful swallowing (often leads to malnutrition and weight loss because of a refusal to eat)
- Voice changes (late stage cancer)
Alcohol is a risk factor for breast cancer in women.
A woman drinking an average of two units of alcohol per day has an 8% higher risk of developing breast cancer than a woman who drinks an average of one unit of alcohol per day. A study concluded that for every additional drink regularly consumed per day, the incidence of breast cancer increases by 11 per 1000. Approximately 6% (between 3.2% and 8.8%) of breast cancers reported in the UK each year could be prevented if drinking was reduced to a very low level (i.e. less than 1 unit/week). Moderate to heavy consumption of alcoholic beverages (at least three to four drinks per week) is associated with a 1.3-fold increased risk of the recurrence of breast cancer. Further, consumption of alcohol at any quantity is associated with significantly increased risk of relapse in breast cancer survivors.
Head and neck cancers are malignant neoplasms that arise in the head and region which comprises nasal cavity, paranasal sinuses, oral cavity, salivary glands, pharynx, and larynx. Majority of head and neck cancers histologically belong to squamous cell type and hence they are categorized as Head and Neck Squamous Cell Carcinoma (abbreviated as HNSCC)[Forastiere AA, 2003]. HNSCC are the 6th most common cancers worldwide and 3rd most common cancers in developing world. They account for ~ 5% of all malignancies worldwide (Ferlay J, 2010) and 3% of all malignancies in the United States (Siegel R, 2014).
Risk factors include tobacco consumption (chewing or smoking), alcohol consumption, Epstein-Barr virus (EBV) infection, human papilloma virus (HPV; esp. HPV 16, 18) infection, betel nut chewing, wood dust exposures, consumption of certain salted fish and others (NCI Factsheet, 2013). EBV infection has been specifically associated with nasopharyngeal cancer. Reverse smoking was considered as a risk factor for oral cancer. Interestingly, "Cis-retinoic acid" (i.e. supplements of retinoic acid) intake may increase the risk of HNSCC in active smokers. Low consumption of fruits and vegetables was associated with higher incidence of HNSCC.
HNSCC classification: Based on the HPV infection status, head and neck cancers are classified into HPV-positive and HPV-negative categories. So far, this is the only available molecular classification. Majority (>50%) of oral cancers are HPV-positive in the U.S. HPV-positive oral cancers are widely prevalent in younger patients and are associated with multiple sexual partners and oral sexual practices. HPV-positive cancers have better prognosis, especially for nonsmokers as compared to HPV-negative cancers.
Staging and grading of HNSCC: HNSCC are classified according to the tumor-node-metastasis (TNM) system of American Joint Committee on cancer. TNM staging system for HNSCC are discussed else where.
Symptoms include lump or sore, sore throat, hoarse of voice, difficulty in swallowing etc (NCI Factsheet, 2013).
Treatment for HNSCC is predominantly based on the stage of the disease. Factors such as patient fitness, baseline swallow, airway functional status, and others are considered before determining the treatment plan. Standard of care for HNSCC includes one or combination of the following: surgery, radiation, chemotherapeutic agents such as Cisplatin, 5-Flurouracil (5-FU) etc. Molecularly targeted therapies were developed since the discovery of role of epidermal growth factor receptor (EGFR) signaling in HNSCC development, progression and prognosis. These targeted therapies include monoclonal antibodies (such as cetuximab, panitumumab etc.) and tyrosine kinase inhibitors (such as erlotinib, gefitinib, etc.). Among these EGFR-targeting agents, only cetuximab has been approved by FDA in 2006 for HNSCC treatment.
Ninety percent (MacMillan, 2015) of cases of head and neck cancer (cancer of the mouth, nasal cavity, nasopharynx, throat and associated structures) are due to squamous cell carcinoma. Symptoms may include a poorly healing mouth ulcer, a hoarse voice or other persistent problems in the area. Treatment is usually with surgery (which may be extensive) and radiotherapy. Risk factors include smoking, alcohol consumption and hematopoietic stem cell transplantation (Elad S, Zadik Y, Zeevi I, et al., 2010, pp. 1243–1244). In addition, recent studies show that about 25% of mouth and 35% of throat cancers are associated with HPV. The 5 year disease free survival rate for HPV positive cancer is significantly higher when appropriately treated with surgery, radiation and chemotherapy as compared to non-HPV positive cancer, substantiated by multiple studies including research conducted by Maura Gillison, "et al." of Johns Hopkins Sidney Kimmel Cancer Center.
Drinking may be a cause of earlier onset of colorectal cancer. The evidence that alcohol is a cause of bowel cancer is convincing in men and probable in women.
The National Institutes of Health, the National Cancer Institute, Cancer Research, the American Cancer Society, the Mayo Clinic, and the Colorectal Cancer Coalition, American Society of Clinical Oncology and the Memorial Sloan-Kettering Cancer Center list alcohol as a risk factor.
A WCRF panel report finds the evidence "convincing" that alcoholic drinks increase the risk of colorectal cancer in men at consumption levels above 30 grams of absolute alcohol daily. The National Cancer Institute states, "Heavy alcohol use may also increase the risk of colorectal cancer"
A 2011 meta-analysis found that alcohol consumption was associated with an increased risk of colorectal cancer.
Erythroplakia has an unknown cause but researchers presume it to be similar to the causes of squamous cell carcinoma. Carcinoma is found in almost 40% of erythroplakia. It is mostly found in elderly men around the ages of 65 - 74. It is commonly associated with smoking.
Alcohol and tobacco use have been described as risk factors.
When associated with the lung, it is typically a centrally located large cell cancer (non-small cell lung cancer or NSCLC). It often has a paraneoplastic syndrome causing ectopic production of parathyroid hormone-related protein (PTHrP), resulting in hypercalcemia, however paraneoplastic syndrome is more commonly associated with small cell lung cancer.
It is primarily due to smoking.
Human papillomavirus infection (HPV) has been associated with SCC of the oropharynx, lung, fingers and anogenital region.
The main medical risk factors are having bladder cancer or having conditions that cause chronic inflammation in the urethra. People over the age of 60 and white women have the highest risks.
STK is extremely common among smokeless tobacco users. Given the association with smokeless tobacco use, this condition tends to occur in adults. A national USA survey estimated an overall prevalence of 1.5% of all types of smokeless tobacco lesions, with males affected more commonly than females.
Tobacco smoking or chewing is the most common causative factor, with more than 80% of persons with leukoplakia having a positive smoking history. Smokers are much more likely to suffer from leukoplakia than non-smokers. The size and number of leukoplakia lesions in an individual is also correlated with the level of smoking and how long the habit has lasted for. Other sources argue that there is no evidence for a direct causative link between smoking and oral leukoplakia. Cigarette smoking may produce a diffuse leukoplakia of the buccal mucosa, lips, tongue and rarely the floor of mouth. Reverse smoking, where the lit end of the cigarette is held in the mouth is also associated with mucosal changes. Tobacco chewing, e.g. betel leaf and areca nut, called paan, tends to produce a distinctive white patch in a buccal sulcus termed "tobacco pouch keratosis". In the majority of persons, cessation triggers shrinkage or disappearance of the lesion, usually within the first year after stopping.
Usually this lesion is reversible if the tobacco habit is stopped completely, even after many years of use. In one report, 98% of lesions disappeared within 2 weeks of stopping tobacco use. The risk of the lesion developing into oral cancer (generally squamous cell carcinoma and its variant verrucous carcinoma) is relatively low. Indeed, veruccous carcinoma is sometimes term snuff dipper's cancer. In most reported cases, malignant transformation has occurring in individuals with a very long history of chewing tobacco or who use dry snuff.
Smokeless tobacco use is also accompanied by increased risk of other oral conditions such as dental caries (tooth decay), periodontitis (gum disease), attrition (tooth wear) and staining.
Although the synergistic effect of alcohol with smoking in the development of oral cancer is beyond doubt, there is no clear evidence that alcohol is involved in the development of leukoplakia, but it does appear to have some influence. Excessive use of a high alcohol containing mouth wash (> 25%) may cause a grey plaque to form on the buccal mucosa, but these lesions are not considered true leukoplakia.
The cause of nicotine stomatitis is thought to be chemical or thermally induced keratosis. The chemicals in tobacco may act as irritants in this condition. Chronic heat exposure is also responsible. Pipe smoking produces more heat on the palate than any other forms of smoking. Long-term drinking of very hot beverages can also cause a similar condition. The severity of the changes correlates with the frequency of the habit. The prevalence depends on a society's use of consuming hot beverages and of smoking in its various forms.
A similar, but more pronounced palatal keratosis occurs with reverse smoking. This is where the lit end of the cigar or cigarette is held in the mouth, another form of smoking associated with high levels of heat in the mouth. This form of the condition is sometimes termed "reverse smoker's keratosis", and is a premalignant lesion. That is, the condition is associated with an increased risk of malignant transformation to oral squamous cell carcinoma (a type of oral cancer). Some sources do not distinguish between reverse smoker's keratosis and smoker's palate that is caused by heat. As such, these sources tend to state that stomatitis nicotina is a premalignant condition. Some reports show that there is an increased risk of tonsillar cancer, lung cancer and tumors of the posterior oral cavity in people who develop stomatitis nicotina.
Symptoms that may be caused by urethral cancer include:
Bleeding from the urethra or blood in the urine,
Weak or interrupted flow of urine,
Urination occurs often, painful urination, inability to pass urine,
A lump or thickness in the perineum or penis,
Discharge from the urethra,
Enlarged lymph nodes or pain in the groin or vaginal area.
Sores or ulcerations can become infected by virus, bacteria or fungus. Pain and loss of taste perception makes it more difficult to eat, which leads to weight loss. Ulcers may act as a site for local infection and a portal of entry for oral flora that, in some instances, may cause septicaemia (especially in immunosuppressed patients). Therefore, oral mucositis can be a dose-limiting condition, disrupting a patient’s optimal cancer treatment plan and consequentially decreasing their chances of survival.
Mucositis is the painful inflammation and ulceration of the mucous membranes lining the digestive tract, usually as an adverse effect of chemotherapy and radiotherapy treatment for cancer. Mucositis can occur anywhere along the gastrointestinal (GI) tract, but oral mucositis refers to the particular inflammation and ulceration that occurs in the mouth. Oral mucositis is a common and often debilitating complication of cancer treatment.
Oral and gastrointestinal (GI) mucositis affects almost all patients undergoing high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT), 80% of patients with malignancies of the head and neck receiving radiotherapy, and a wide range of patients receiving chemotherapy. Alimentary tract mucositis increases mortality and morbidity and contributes to rising health care costs.
For most cancer treatment, about 5–15% of patients get mucositis. However, with 5-fluorouracil (5-FU), up to 40% get mucositis, and 10–15% get grade 3–4 oral mucositis. Irinotecan is associated with severe GI mucositis in over 20% of patients. Seventy-five to eighty percent of bone marrow transplantation recipients experience mucositis, of which oral mucositis is the most common and most debilitating, especially when melphalan is used. In grade 3 oral mucositis, the patient is unable to eat solid food, and in grade 4, the patient is unable to consume liquids as well.
Radiotherapy to the head and neck or to the pelvis or abdomen is associated with Grade 3 and Grade 4 oral or GI mucositis, respectively, often exceeding 50% of patients. Among patients undergoing head and neck radiotherapy, pain and decreased oral function may persist long after the conclusion of therapy. Fractionated radiation dosage increases the risk of mucositis to > 70% of patients in most trials. Oral mucositis is particularly profound and prolonged among HSCT recipients who receive total-body irradiation.
The condition is uncommon. It occurs usually in elderly males who have a history of heavy pipe smoking, but it also can occur in cigar or cigarette smokers. The condition was once common, but has become more rare as habits such as pipe and cigar smoking have decreased in popularity.
There are many oral and maxillofacial pathologies which are not fully understood.
- Burning mouth syndrome (BMS) is a disorder where there is a burning sensation in the mouth that has no identifiable medical or dental cause. The disorder can affect anyone but tends to occur most often in middle aged women. BMS has been hypothesized to be linked to a variety of factors such as the menopause, dry mouth (xerostomia) and allergies. BMS usually lasts for several years before disappearing for unknown reasons. Other features of this disorder include anxiety, depression and social isolation. There is no cure for this disorder and treatment includes use of hydrating agents, pain medications, vitamin supplements or the usage of antidepressants.
- Aphthous stomatitis is a condition where ulcers (canker sores) appear on the inside of the mouth, lips and on tongue. Most small canker sores disappear within 10–14 days. Canker sores are most common in young and middle aged individuals. Sometimes individuals with allergies are more prone to these sores. Besides an awkward sensation, these sores can also cause pain or tingling or a burning sensation. Unlike herpes sores, canker sores are always found inside the mouth and are usually less painful. Good oral hygiene does help but sometime one may have to use a topical corticosteroid.
- Migratory stomatitis is a condition that involves the tongue and other oral mucosa. The common migratory glossitis (geographic tongue) affects the anterior two thirds of the dorsal and lateral tongue mucosa of 1% to 2.5% of the population, with one report of up to 12.7% of the population. The tongue is often fissured, especially. in elderly individuals. In the American population, a lower prevalence was reported among Mexican Americans (compared with Caucasians and African Americans) and cigarette smokers. When other oral mucosa, beside the dorsal and lateral tongue, are involved, the term migratory stomatitis (or ectopic geographic tongue) is preferred. In this condition, lesions infrequently involve also the ventral tongue and buccal or labial mucosa. They are rarely reported on the soft palate and floor of the mouth.