Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.
Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.
The cause of acoustic neuromas is usually unknown; however there is a growing body of evidence that sporadic defects in tumor suppressor genes may give rise to these tumors in some individuals. In particular, loss or mutation of a tumor suppressor gene on the long arm of chromosome 22 is strongly associated with vestibular schwannomas. Other studies have hinted at exposure to loud noise on a consistent basis. One study has shown a relationship between acoustic neuromas and prior exposure to head and neck radiation, and a concomitant history of having had a parathyroid adenoma (tumor found in proximity to the thyroid gland controlling calcium metabolism). There are even controversies on hand held cellular phones. Whether or not the radiofrequency radiation has anything to do with acoustic neuroma formation, remains to be seen. To date, no environmental factor (such as cell phones or diet) has been scientifically proven to cause these tumors. The Acoustic Neuroma Association (ANA) does recommend that frequent cellular phone users use a hands free device to enable separation of the device from the head.
Although there is an inheritable condition called Neurofibromatosis Type 2 (NF2) which can lead to acoustic neuroma formation in some people, most acoustic neuromas occur spontaneously without any evidence of family history (95%). NF2 occurs with a frequency of 1 in 30,000 to 1 in 50,000 births. The hallmark of this disorder is bilateral acoustic neuromas (an acoustic neuroma on both sides) usually developing in late childhood or early adulthood, frequently associated with other brain and spinal chord tumors.
A schwannoma is a usually-benign nerve sheath tumor composed of Schwann cells, which normally produce the insulating myelin sheath covering peripheral nerves.
A vestibular schwannoma (VS) is a benign primary intracranial tumor of the myelin-forming cells of the vestibulocochlear nerve (8th cranial nerve). A type of schwannoma, this tumor arises from the Schwann cells responsible for the myelin sheath that helps keep peripheral nerves insulated. Although it is also called an acoustic neuroma, this a misnomer for two reasons. First, the tumor usually arises from the vestibular division of the vestibulocochlear nerve, rather than the cochlear division. Second, it is derived from the Schwann cells of the associated nerve, rather than the actual neurons (neuromas).
Approximately 2,000 to 3,000 cases are diagnosed each year in the United States (6 to 9 per million persons). Comprehensive studies from Denmark published in 2012 showed an annual incidence of 19-23 per million from 2002 to 2008, over the last 30 years the reported incidence have been increasing, until the last decade in which an approximation of the true incidence may have been found. Most recent publications suggest that the incidence of vestibular schwannomas have been rising because of advances in MRI scanning.
Most cases are diagnosed in people between the ages of 30 and 60, and men and women appear to be affected equally. Most vestibular schwannomas occur spontaneously in those without a family history. One confirmed risk factor is a rare genetic mutation called NF2.
The primary symptoms of vestibular schwannoma are unexplained progressive unilateral hearing loss and tinnitus, and vestibular (disequilibrium) symptoms. Treatment of the condition is by surgery or radiation, and often results in substantial or complete hearing loss in the affected ear. Observation (non-treatment) over time also usually results in hearing loss in the affected ear.
In most cases, symptoms of NF1 are mild, and individuals live normal and productive lives. In some cases, however, NF1 can be severely debilitating and may cause cosmetic and psychological issues. The course of NF2 varies greatly among individuals. In some cases of NF2, the damage to nearby vital structures, such as other cranial nerves and the brain stem, can be life-threatening. Most individuals with schwannomatosis have significant pain. In some extreme cases the pain will be severe and disabling.
Schwannomas are homogeneous tumors, consisting only of Schwann cells. The tumor cells always stay on the outside of the nerve, but the tumor itself may either push the nerve aside and/or up against a bony structure (thereby possibly causing damage). Schwannomas are relatively slow-growing. For reasons not yet understood, schwannomas are mostly benign and less than 1% become malignant, degenerating into a form of cancer known as neurofibrosarcoma. These masses are generally contained within a capsule, and so surgical removal is often successful.
Schwannomas can be associated with neurofibromatosis type II, which may be due to a loss-of-function mutation in the protein merlin. They are universally S-100 positive, which is a marker for cells of neural crest cell origin.
Schwannomas of the head and neck are a fairly common occurrence and can be found incidentally in 3–4% of patients at autopsy. Most common of these is a vestibular schwannoma, a tumor of the vestibulocochlear nerve that may lead to tinnitus and hearing loss on the affected side. Outside the cranial nerves, schwannomas may present on the flexor surfaces of the limbs. Rare occurrences of these tumors in the penis have been documented in the literature.
Verocay bodies are seen histologically in schwannomas.
For low-grade tumors, the prognosis is somewhat more optimistic. Patients diagnosed with a low-grade glioma are 17 times as likely to die as matched patients in the general population.
The age-standardized 10-year relative survival rate was 47%. One study reported that low-grade oligodendroglioma patients have a median survival of 11.6 years; another reported a median survival of 16.7 years.
A brain stem tumor is a tumor in the part of the brain that connects to the spinal cord (the brain stem).
NF1 occurs in 1 in 3000 individuals and is equally prevalent among men and women. It is among the most common inherited nervous system disorders. Affected individuals have a 10- to 15-year reduction in life expectancy compared to the average person.
Esthesioneuroblastoma is a slow developing but malignant tumor with high reoccurrence rates because of its anatomical position. The tumor composition, location and metastatic characteristics as well as the treatment plan determine prognosis. Common clinical classification systems for esthesioneuroblastoma include the Kadish classification and the Dulguerov classfictation. Histopathological characteristics on top of Kadish classification can further determine cancer prognosis. In severe, Kadish class C tumors, Haym's grades of pathology are important for prognosis. Patients with low grade Kadish class C tumors have a 10-year survival rate of 86 percent compared to patients with high grade class C tumors who have a survival rate of 28 percent. Surgically treated patients with high grade tumors are more likely to experience leptomeningeal metastases or involvement of the cerebral spinal fluid unlike patients with low grade tumors who usually only see local recurrence. Survival rates for treated esthesioneuroblastoma are best for surgery with radiotherapy (65%), then for radiotherapy and chemotherapy (51%), just surgery (48%), surgery, radiotherapy and chemotherapy (47) and finally just radiotherapy (37%). From the literature, radiotherapy and surgery seem to boast the best outcome for patients. However, it is important to understand that to some degree, prognosis is related to tumor severity. More progressed, higher grade tumors would result in chemotherapy or radiotherapy as the only treatment. It is no surprise that the prognosis would be worse in these cases.
The clinical spectrum of the condition is broad. In other words, people with NF II may develop a wide range of distinct problems.
1. Acoustic nerve: 90% of the patients show bilateral acoustic schwannomas on magnetic resonance imaging (MRI).
2. Other cranial nerves and meninges: About 50% of patients develop tumours in other cranial nerves or meningiomas.
3. Spinal cord: About 50% of the patients develop spinal lesions. Only 40% of the spinal lesions are symptomatic. The spinal tumours in NF II are separated in two groups. Intramedullary lesions are located within the spinal tissue and usually belong to the so-called spinal astrocytomas or ependymomas. The extramedullary lesions are located within the small space between the surface of the spinal cord and the bony wall of the spinal canal. These tumours belong to the schwannomas and meningiomas.
4. Skin: If children show neurofibromas, a diagnostic procedure should be performed to decide which form of neurofibromatosis causes the alterations.
5. Eyes: Studies on patients with NF II show that more than 90% of the affected persons suffer eye lesions. The most common alteration in NF II is the juvenile subcapsular cataract (opacity of the lens) in young people.
"Presenting symptoms" (initial concern that brings a patient to a doctor) of a lesion of the nervus vestibulocochlearis due to a tumour in the region of the cerebello-pontine angle are the following: hearing loss (98%), tinnitus (70%), dysequilibrium (67%), headache (32%), facial numbness and weakness (29% and 10% respectively).
"Clinical signs" (alterations that are not regarded by the patient and that can be detected by the doctor in a clinical examination) of the lesion in discussion are: abnormal corneal reflex (33%), nystagmus (26%), facial hypesthesia (26%).
Evaluation (study of the patient with technical methods) shows the enlargement of the porus acousticus internus in the CT scan, enhancing tumours in the region of the cerebello-pontine angle in gadolinium-enhanced MRI scans, hearing loss in audiometric studies and perhaps pathological findings in electronystagmography. Some times there are elevated levels of protein in liquor study.
In NF II, acoustic neuromas usually affect young people, whereas in sporadic forms of acoustic neuromas, the appearance of the tumour is limited to the elderly.
There are two forms of the NF II:
- The "Wishart-Phenotype" is characterized by multiple cerebral and spinal lesions in patients younger than 20 years and with rapid progression of the tumours.
- Patients that develop single central tumours with slow progression after age of 20 are thought to have the "Feiling-Gardner-Phenotype".
Treatment typically consists of radiotherapy and steroids for palliation of symptoms. Radiotherapy may result in minimally extended survival time. Prognosis is very poor, with only 37% of treated patients surviving one year or more. Topotecan has been studied in the treatment of brainstem glioma, otherwise, chemotherapy is probably ineffective, though further study is needed.
Because hearing loss in those with NF-2 almost always occurs after acquisition of verbal language skills, patients do not always integrate well into the Deaf culture and are more likely to resort to auditory assistive technology.
The most sophisticated of these devices is the cochlear implant, which can sometimes restore a high level of auditory function even when natural hearing is totally lost. However, the amount of destruction to the cochlear nerve caused by the typical NF2 schwannoma often precludes the use of such an implant. In these cases, an auditory brainstem implant (ABI) can restore a primitive level of hearing, which, when supplemented by lip reading, can restore a functional understanding of spoken language.
Gliomas are rarely curable. The prognosis for patients with high-grade gliomas is generally poor, and is especially so for older patients. Of 10,000 Americans diagnosed each year with malignant gliomas, about half are alive one year after diagnosis, and 25% after two years. Those with anaplastic astrocytoma survive about three years. Glioblastoma multiforme has a worse prognosis with less than a 12-month average survival after diagnosis, though this has extended to 14 months with more recent treatments.
The median survival time of patients without treatment is four to six weeks. The best prognosis are seen from NM due to breast cancer with the median overall survival of no more than six months after diagnosis of NM. Death are generally due to progressive neurological dysfunction. Treatment is meant to stabilize neurological function and prolong survival. Neurological dysfunction usually cannot be fixed but progressive dysfunction can be halted and survival may be increased to four to six months.
Factors that lower survival:
Much of prognosis can be determined from the damage due to primary cancer. Negative hormone receptor status, poor performance status, more than 3 chemotherapy regimes, and high Cyfra 21-1 level at diagnosis, all indicates lower survival period of patients with NM. Cyfra 21-1 is a fragment of the cytokeratin 19 and may reflect the tumor burden within the CSF.
The overall complication rate following surgery is around 20%; cerebrospinal fluid leak is the most common.
The Kadish classification is used for clinical classification of sinonasal tumors including esthesioneuroblastoma. Subsequent research articles have been published to determine prognosis based on tumor grade.
Dulguerov Classification
Paragangliomas originate from paraganglia in chromaffin-negative glomus cells derived from the embryonic neural crest, functioning as part of the sympathetic nervous system (a branch of the autonomic nervous system). These cells normally act as special chemoreceptors located along blood vessels, particularly in the carotid bodies (at the bifurcation of the common carotid artery in the neck) and in aortic bodies (near the aortic arch).
Accordingly, paragangliomas are categorised as originating from a neural cell line in the World Health Organization classification of neuroendocrine tumors. In the categorization proposed by Wick, paragangliomas belong to group II. Given the fact that they originate from cells of the orthosympathetic system, paragangliomas are closely related to pheochromocytomas, which however are chromaffin-positive.
A paraganglioma is a rare neuroendocrine neoplasm that may develop at various body sites (including the head, neck, thorax and abdomen). Unlike other types of cancer, there is no test that determines benign from malignant tumors; long-term followup is therefore recommended for all individuals with paraganglioma. Approximately 50% of patients with recurrent disease experience distant metastasis. The five-year survival in the setting of metastatic disease is 40% to 45%.
Neoplastic or malignant meningitis, also called meningitis carcinomatosa and leptomeningeal carcinomatosis, is the development of meningitis due to infiltration of the subarachnoid space by cancerous cells. Malignant cells come from primary cancer such as breast cancer or from a primary brain tumor like medulloblastoma. Neoplastic Meningitis (NM) was first reported in the 1870s with the most common cause being breast cancer, lung cancer, and malignant melanoma.
A lateral pontine syndrome is a lesion which is similar to the lateral medullary syndrome, but because it occurs in the pons, it also involves the cranial nerve nuclei of the pons.
Damage to the following areas produces symptoms (from medial to lateral):
Jacod Syndrome is commonly associated with a tumor of the middle cranial fossa (near the apex of the orbit); but it can have several other causes.
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
Orbital apex syndrome, also known as Jacod syndrome, is a collection of cranial nerve deficits associated with a mass lesion near the apex of the orbit of the eye. This syndrome is a separate entity from Rochon–Duvigneaud syndrome, which occurs due to a lesion immediately anterior to the orbital apex. Most commonly optic nerve is involved.