Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tobacco smoking is by far the main contributor to lung cancer. Cigarette smoke contains at least 73 known carcinogens, including benzo["a"]pyrene, NNK, 1,3-butadiene and a radioactive isotope of polonium, polonium-210. Across the developed world, 90% of lung cancer deaths in men during the year 2000 were attributed to smoking (70% for women). Smoking accounts for about 85% of lung cancer cases.
Passive smoking—the inhalation of smoke from another's smoking—is a cause of lung cancer in nonsmokers. A passive smoker can be defined as someone living or working with a smoker. Studies from the US, Europe and the UK have consistently shown a significantly increased risk among those exposed to passive smoke. Those who live with someone who smokes have a 20–30% increase in risk while those who work in an environment with secondhand smoke have a 16–19% increase in risk. Investigations of sidestream smoke suggest it is more dangerous than direct smoke. Passive smoking causes about 3,400 deaths from lung cancer each year in the USA.
Marijuana smoke contains many of the same carcinogens as those in tobacco smoke. However, the effect of smoking cannabis on lung cancer risk is not clear. A 2013 review did not find an increased risk from light to moderate use. A 2014 review found that smoking cannabis doubled the risk of lung cancer.
Outdoor air pollutants, especially chemicals released from the burning of fossil fuels, increase the risk of lung cancer. Fine particulates (PM) and sulfate aerosols, which may be released in traffic exhaust fumes, are associated with slightly increased risk. For nitrogen dioxide, an incremental increase of 10 parts per billion increases the risk of lung cancer by 14%. Outdoor air pollution is estimated to account for 1–2% of lung cancers.
Tentative evidence supports an increased risk of lung cancer from indoor air pollution related to the burning of wood, charcoal, dung or crop residue for cooking and heating. Women who are exposed to indoor coal smoke have about twice the risk and a number of the by-products of burning biomass are known or suspected carcinogens. This risk affects about 2.4 billion people globally, and is believed to account for 1.5% of lung cancer deaths.
Working with asbestos is the most common risk factor for mesothelioma. However, mesothelioma has been reported in some individuals without any known exposure to asbestos.
The incidence of mesothelioma has been found to be higher in populations living near naturally occurring asbestos. People can be exposed to naturally occurring asbestos in areas where mining or road construction is occurring, or when the asbestos-containing rock is naturally weathered. Another common route of exposure is through asbestos-containing soil, which is used to whitewash, plaster, and roof houses in Greece. In central Cappadocia, Turkey, mesothelioma was causing 50% of all deaths in three small villages—Tuzköy, Karain, and Sarıhıdır. Initially, this was attributed to erionite. Environmental exposure to asbestos has caused mesothelioma in places other than Turkey, including Corsica, Greece, Cyprus, China, and California. In the northern Greek mountain town of Metsovo, this exposure had resulted in mesothelioma incidence around 300 times more than expected in asbestos-free populations, and was associated with very frequent pleural calcification known as "Metsovo Lung".
The documented presence of asbestos fibers in water supplies and food products has fostered concerns about the possible impact of long-term and, as yet, unknown exposure of the general population to these fibers.
Exposure to talc is also a risk factor for mesothelioma; exposure can affect those who live near talc mines, work in talc mines, or work in talc mills.
In the United States, asbestos is considered the major cause of malignant mesothelioma and has been considered "indisputably" associated with the development of mesothelioma. Indeed, the relationship between asbestos and mesothelioma is so strong that many consider mesothelioma a “signal” or “sentinel” tumor. A history of asbestos exposure exists in most cases.
Pericardial mesothelioma may not be associated with asbestos exposure.
Asbestos was known in antiquity, but it was not mined and widely used commercially until the late 19th century. Its use greatly increased during World War II. Since the early 1940s, millions of American workers have been exposed to asbestos dust. Initially, the risks associated with asbestos exposure were not publicly known. However, an increased risk of developing mesothelioma was later found among naval personnel (e.g., Navy, Marine Corps, and Coast Guard), shipyard workers, people who work in asbestos mines and mills, producers of asbestos products, workers in the heating and construction industries, and other tradespeople. Today, the official position of the U.S. Occupational Safety and Health Administration (OSHA) and the U.S. EPA is that protections and "permissible exposure limits" required by U.S. regulations, while adequate to prevent most asbestos-related non-malignant disease, are "not" adequate to prevent or protect against asbestos-related cancers such as mesothelioma. Likewise, the British Government's Health and Safety Executive (HSE) states formally that any threshold for exposure to asbestos must be at a very low level and it is widely agreed that if any such threshold does exist at all, then it cannot currently be quantified. For practical purposes, therefore, HSE assumes that no such "safe" threshold exists. Others have noted as well that there is no evidence of a threshold level below which there is no risk of mesothelioma. There appears to be a linear, dose-response relationship, with increasing dose producing increasing risk of disease. Nevertheless, mesothelioma may be related to brief, low level or indirect exposures to asbestos. The dose necessary for effect appears to be lower for asbestos-induced mesothelioma than for pulmonary asbestosis or lung cancer. Again, there is no known safe level of exposure to asbestos as it relates to increased risk of mesothelioma.
The time from first exposure to onset of the disease, is between 25 and 70 years. It is virtually never less than fifteen years and peaks at 30–40 years. The duration of exposure to asbestos causing mesothelioma can be short. For example, cases of mesothelioma have been documented with only 1–3 months of exposure.
Asbestos can cause lung cancer that is identical to lung cancer from other causes. Exposure to asbestos is associated with all major histological types of lung carcinoma (adenocarcinoma, squamous cell carcinoma, large-cell carcinoma and small-cell carcinoma). The latency period between exposure and development of lung cancer is 20 to 30 years. It is estimated that 3%-8% of all lung cancers are related to asbestos. The risk of developing lung cancer depends on the level, duration, and frequency of asbestos exposure (cumulative exposure). Smoking and individual susceptibility are other contributing factors towards lung cancer. Smokers who have been exposed to asbestos are at far greater risk of lung cancer. Smoking and asbestos exposure have a multiplicative (synergistic) effect on the risk of lung cancer. Symptoms include chronic cough, chest pain, breathlessness, haemoptysis (coughing up blood), wheezing or hoarseness of the voice, weight loss and fatigue. Treatment involves surgical removal of the cancer, chemotherapy, radiotherapy, or a combination of these (multimodality treatment). Prognosis is generally poor unless the cancer is detected in its early stages. Out of all patients diagnosed with lung cancer, only 15% survive for five years after diagnosis.
Malignant pleural effusion is a condition in which cancer causes an abnormal amount of fluid to collect between the thin layers of tissue (pleura) lining the outside of the lung and the wall of the chest cavity. Lung cancer and breast cancer account for about 50-65% of malignant pleural effusions. Other common causes include pleural mesothelioma and lymphoma.
The two major risk factors for esophageal squamous-cell carcinoma are tobacco (smoking or chewing) and alcohol. The combination of tobacco and alcohol has a strong synergistic effect. Some data suggest that about half of all cases are due to tobacco and about one-third to alcohol, while over three-quarters of the cases in men are due to the combination of smoking and heavy drinking. Risks associated with alcohol appear to be linked to its aldehyde metabolite and to mutations in certain related enzymes. Such metabolic variants are relatively common in Asia.
Other relevant risk factors include regular consumption of very hot drinks (over 65 °C)(149 Fahrenheit) and ingestion of caustic substances. High levels of dietary exposure to nitrosamines (chemical compounds found both in tobacco smoke and certain foodstuffs) also appear to be a relevant risk factor. Unfavorable dietary patterns seem to involve exposure to nitrosamines through processed and barbecued meats, pickled vegetables, etc., and a low intake of fresh foods. Other associated factors include nutritional deficiencies, low socioeconomic status, and poor oral hygiene. Chewing betel nut (areca) is an important risk factor in Asia.
Physical trauma may increase the risk. This may include the drinking of very hot drinks.
The goal of treatment of malignant pleural effusions is relief of breathlessness. Occasionally, treatment of the underlying cancer can cause resolution of the effusion. This may be the case with types of cancer that respond well to chemotherapy, such as small cell carcinoma or lymphoma. Simple aspiration of pleural fluid can relieve breathlessness rapidly but fluid and symptoms will usually recur within a couple of weeks. For this reason, more permanent treatments are usually used to prevent fluid recurrence. Standard treatment involves chest tube insertion and pleurodesis. However, this treatment requires an inpatient stay of approximately 2–7 days, can be painful and has a significant failure rate. This has led to the development of tunneled pleural catheters (e.g., Pleurx Catheters), which allow outpatient treatment of effusions.
The two main types (i.e. squamous-cell carcinoma and adenocarcinoma) have distinct sets of risk factors. Squamous-cell carcinoma is linked to lifestyle factors such as smoking and alcohol. Adenocarcinoma has been linked to effects of long-term acid reflux. Tobacco is a risk factor for both types. Both types are more common people over 60 years of age.
Current dietary recommendations to prevent colorectal cancer include increasing the consumption of whole grains, fruits and vegetables, and reducing the intake of red meat and processed meats. Higher physical activity is also recommended. Physical exercise is associated with a modest reduction in colon but not rectal cancer risk. High levels of physical activity reduce the risk of colon cancer by about 21%. Sitting regularly for prolonged periods is associated with higher mortality from colon cancer. The risk is not negated by regular exercise, though it is lowered. The evidence for any protective effect conferred by fiber and fruits and vegetables is, however, poor. The risk of colon cancer can be reduced by maintaining a normal body weight.
The annual age-adjusted incidence rate (AAIR) of PSP is thought to be three to six times as high in males as in females. Fishman cites AAIR's of 7.4 and 1.2 cases per 100,000 person-years in males and females, respectively. Significantly above-average height is also associated with increased risk of PSP – in people who are at least 76 inches (1.93 meters) tall, the AAIR is about 200 cases per 100,000 person-years. Slim build also seems to increase the risk of PSP.
The risk of contracting a first spontaneous pneumothorax is elevated among male and female smokers by factors of approximately 22 and 9, respectively, compared to matched non-smokers of the same sex. Individuals who smoke at higher intensity are at higher risk, with a "greater-than-linear" effect; men who smoke 10 cigarettes per day have an approximate 20-fold increased risk over comparable non-smokers, while smokers consuming 20 cigarettes per day show an estimated 100-fold increase in risk.
In secondary spontaneous pneumothorax, the estimated annual AAIR is 6.3 and 2.0 cases per 100,000 person-years for males and females, respectively, with the risk of recurrence depending on the presence and severity of any underlying lung disease. Once a second episode has occurred, there is a high likelihood of subsequent further episodes. The incidence in children has not been well studied, but is estimated to be between 5 and 10 cases per 100,000 person-years.
Death from pneumothorax is very uncommon (except in tension pneumothoraces). British statistics show an annual mortality rate of 1.26 and 0.62 deaths per million person-years in men and women, respectively. A significantly increased risk of death is seen in older victims and in those with secondary pneumothoraces.
MCACL has a much more favorable prognosis than most other forms of adenocarcinoma and most other NSCLC's. Cases have been documented of continued growth of these lesions over a period of 10 years without symptoms or metastasis. The overall mortality rate appears to be somewhere in the vicinity of 18% to 27%, depending on the criteria that are used to define this entity.
Tobacco smoking is the main known contributor to urinary bladder cancer; in most populations, smoking is associated with over half of bladder cancer cases in men and one-third of cases among women, however these proportions have reduced over recent years since there are fewer smokers in Europe and North America. There is an almost linear relationship between smoking duration (in years), pack years and bladder cancer risk. A risk plateau at smoking about 15 cigarettes a day can be observed (meaning that those who smoke 15 cigarettes a day are approximately at the same risk as those smoking 30 cigarettes a day). Quitting smoking reduces the risk, however former smokers will most likely always be at a higher risk of bladder cancer compared to never smokers. Passive smoking has not been proven to be involved.
Thirty percent of bladder tumors probably result from occupational exposure in the workplace to carcinogens such as benzidine. 2-Naphthylamine, which is found in cigarette smoke, has also been shown to increase bladder cancer risk. Occupations at risk are bus drivers, rubber workers, motor mechanics, leather (including shoe) workers, blacksmiths, machine setters, and mechanics. Hairdressers are thought to be at risk as well because of their frequent exposure to permanent hair dyes.
In addition to these major risk factors there are also numerous other modifiable factors that are less strongly (i.e. 10–20% risk increase) associated with bladder cancer, for example, obesity. Although these could be considered as minor effects, risk reduction in the general population could still be achieved by reducing the prevalence of a number of smaller risk factor together.
It has been suggested that mutations at HRAS, KRAS2, RB1, and FGFR3 may be associated in some cases.
When a pleural effusion has been determined to be exudative, additional evaluation is needed to determine its cause, and amylase, glucose, pH and cell counts should be measured.
- Red blood cell counts are elevated in cases of bloody effusions (for example after heart surgery or hemothorax from incomplete evacuation of blood).
- Amylase levels are elevated in cases of esophageal rupture, pancreatic pleural effusion, or cancer.
- Glucose is decreased with cancer, bacterial infections, or rheumatoid pleuritis.
- pH is low in empyema (<7.2) and may be low in cancer.
- If cancer is suspected, the pleural fluid is sent for cytology. If cytology is negative, and cancer is still suspected, either a thoracoscopy, or needle biopsy of the pleura may be performed.
- Gram staining and culture should also be done.
- If tuberculosis is possible, examination for "Mycobacterium tuberculosis" (either a Ziehl–Neelsen or Kinyoun stain, and mycobacterial cultures) should be done. A polymerase chain reaction for tuberculous DNA may be done, or adenosine deaminase or interferon gamma levels may also be checked.
The most common causes of exudative pleural effusions are bacterial pneumonia, cancer (with lung cancer, breast cancer, and lymphoma causing approximately 75% of all malignant pleural effusions), viral infection, and pulmonary embolism.
Another common cause is after heart surgery, when incompletely drained blood can lead to an inflammatory response that causes exudative pleural fluid.
Conditions associated with exudative pleural effusions:
- Parapneumonic effusion due to pneumonia
- Malignancy (either lung cancer or metastases to the pleura from elsewhere)
- Infection (empyema due to bacterial pneumonia)
- Trauma
- Pulmonary infarction
- Pulmonary embolism
- Autoimmune disorders
- Pancreatitis
- Ruptured esophagus (Boerhaave's syndrome)
- Rheumatoid pleurisy
- Drug-induced lupus
It has been estimated that about half of colorectal cancer cases are due to lifestyle factors and about a quarter of all cases are preventable. Increasing surveillance, engaging in physical activity, consuming a diet high in fiber, and reducing smoking and alcohol consumption decrease the risk.
Accurate incidence statistics on MCACL are unavailable. It is a very rare tumor, with only a few dozen cases reported in the literature to date.
In the few cases described in the literature to date, the male-to-female ratio is approximately unity, and right lung lesions occurred twice as commonly as left lung lesions. Approximately 2/3 of cases have been associated with tobacco smoking. Cases have been reported in patients as young as 29.
Secondary spontaneous pneumothorax occurs in the setting of a variety of lung diseases. The most common is chronic obstructive pulmonary disease (COPD), which accounts for approximately 70% of cases. Known lung diseases that may significantly increase the risk for pneumothorax are
In children, additional causes include measles, echinococcosis, inhalation of a foreign body, and certain congenital malformations (congenital cystic adenomatoid malformation and congenital lobar emphysema).
11.5% of people with a spontaneous pneumothorax have a family member who has previously experienced a pneumothorax. The hereditary conditions – Marfan syndrome, homocystinuria, Ehlers–Danlos syndrome, alpha 1-antitrypsin deficiency (which leads to emphysema), and Birt–Hogg–Dubé syndrome—have all been linked to familial pneumothorax. Generally, these conditions cause other signs and symptoms as well, and pneumothorax is not usually the primary finding. Birt–Hogg–Dubé syndrome is caused by mutations in the "FLCN" gene (located at chromosome 17p11.2), which encodes a protein named folliculin. "FLCN" mutations and lung lesions have also been identified in familial cases of pneumothorax where other features of Birt–Hogg–Dubé syndrome are absent. In addition to the genetic associations, the HLA haplotype AB is also a genetic predisposition to PSP.
It occurs in all adult age groups. While the majority of patients are between 40 and 59 years old, age predilection is much less pronounced than in noninflammatory breast cancer. The overall rate is 1.3 cases per 100000, black women (1.6) have the highest rate, Asian and Pacific Islander women the lowest (0.7) rates.
Most known breast cancer risk predictors do not apply for inflammatory breast cancer. It may be slightly associated with cumulative breast-feeding duration.
Malignant mesothelioma is an aggressive and incurable tumour caused by asbestos arising from mesothelial cells of the pleura, peritoneum (the lining of the abdominal cavity) and rarely elsewhere. Pleural mesothelioma is the most common type of mesothelioma, representing about 75 percent of cases. Peritoneal mesothelioma is the second most common type, consisting of about 10 to 20 percent of cases. Mesothelioma appears from 20 to 50 years after the initial exposure to asbestos. The symptoms include shortness of breath, chronic chest pain, cough, and weight loss. Diagnosing mesothelioma is often difficult and can include physical examination, chest X-ray and lung function tests, followed by CT scan and MRI. A biopsy is needed to confirm a diagnosis of malignant mesothelioma. Mesothelioma has a poor prognosis, with most patients dying within 1 year of diagnosis. The treatment strategies include surgery, radiotherapy, chemotherapy or multimodality treatment. Several tumour biomarkers (soluble mesothelin-related protein (SMRP), osteopontin and fibulin3) have been evaluated for diagnostic purposes to allow early detection of this disease. Novel biomarkers such as volatile organic compounds measured in exhaled breath are also promising.
A 2008 study commissioned by the World Health Organisation concluded that "specific fruit and vegetables may act to reduce the risk of bladder cancer." Fruit and yellow-orange vegetables, particularly carrots and those containing selenium, are probably associated with a moderately reduced risk of bladder cancer. Citrus fruits and cruciferous vegetables were also identified as having a possibly protective effect. However an analysis of 47,909 men in the Health Professionals Follow-Up Study showed little correlation between cancer reduction and high consumption of fruits and vegetables overall, or yellow or green leafy vegetables specifically, compared to the statistically significant reduction among those men who consumed large amounts of cruciferous vegetables.
In a 10-year study involving almost 49,000 men, researchers found that men who drank at least 1,44 L of water (around 6 cups) per day had a significantly reduced incidence of bladder cancer when compared with men who drank less. It was also found that: "the risk of bladder cancer decreased by 7% for every 240 mL of fluid added". The authors proposed that bladder cancer might partly be caused by the bladder directly contacting carcinogens that are excreted in urine, although this has not yet been confirmed in other studies.
Symptoms are usually relieved with radiation therapy within one month of treatment. However, even with treatment, 99% of patients die within two and a half years. This relates to the cancerous causes of SVC that are 90% of the cases. The average age of onset of disease is 54 years of age.
Its cause is usually traumatic, from a blunt or penetrating injury to the thorax, resulting in a rupture of the serous membrane either lining the thorax or covering the lungs. This rupture allows blood to spill into the pleural space, equalizing the pressures between it and the lungs. Blood loss may be massive in people with these conditions, as each side of the thorax can hold 30 to 40% of a person's blood volume or 1.5 to 2 L per side in the average adult. Even minor injury to the chest wall can lead to significant hemothorax.
Less frequently, hemothorax occurs spontaneously. A major vascular cause of hemothorax is aortic dissection or rupture of thoracic aortic aneurysms. It may also follow surgical intervention in the thoracic area. Infrequently, patients with pneumothorax may develop spontaneous hemothorax. Spontaneous hemothorax or hemopneumothorax may be occur with endometriosis, if endometrial tissue implants on the pleural surface, then bleeds in response to cyclical hormonal changes in menstruating women.
A hemothorax is a type of pleural effusion in which blood accumulates in the pleural cavity. This excess fluid can interfere with normal breathing by limiting the expansion of the lungs. The term is from "" + "thorax".
Other causes of pleural effusion include tuberculosis (though stains of pleural fluid are only rarely positive for acid-fast bacilli, this is the most common cause of pleural effusions in some developing countries), autoimmune disease such as systemic lupus erythematosus, bleeding (often due to chest trauma), chylothorax (most commonly caused by trauma), and accidental infusion of fluids.
Less common causes include esophageal rupture or pancreatic disease, intra-abdominal abscesses, rheumatoid arthritis, asbestos pleural effusion, mesothelioma, Meigs' syndrome (ascites and pleural effusion due to a benign ovarian tumor), and ovarian hyperstimulation syndrome.
Pleural effusions may also occur through medical or surgical interventions, including the use of medications (pleural fluid is usually eosinophilic), coronary artery bypass surgery, abdominal surgery, endoscopic variceal sclerotherapy, radiation therapy, liver or lung transplantation, and intra- or extravascular insertion of central lines.
Barrel chest generally refers to a , deep chest found on a man. A man described as barrel chested will usually have a naturally large ribcage, very round torso, large lung capacity, and can potentially have great upper body strength. It can sometimes be a sign of acromegaly (a syndrome resulting from excess levels of human growth hormone (HGH) in the body). It is most commonly related to osteoarthritis as individuals age. Arthritis can stiffen the chest causing the ribs to become fixed in their most expanded position, giving the appearance of a barrel chest.
Barrel chest also refers to an increase in the anterior posterior diameter of the chest wall resembling the shape of a barrel, most often associated with emphysema. There are two main causes of the barrel chest phenomenon in emphysema:
1. Increased compliance of the lungs leads to the accumulation of air pockets inside the thoracic cavity.
2. Increased compliance of the lungs increases the intrathoracic pressure. This increase in pressure allows the chest wall to naturally expand outward.
Barrel chest occurs naturally in native people who live at altitudes of over 5500 m, e.g. the Himalayas or the Andes. These natives also have polycythemia and other accommodations for high altitude life.