Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cancer prevalence in dogs increases with age and certain breeds are more susceptible to specific kinds of cancers. Millions of dogs develop spontaneous tumors each year. Boxers, Boston Terriers and Golden Retrievers are among the breeds that most commonly develop mast cell tumors. Large and giant breeds, like Great Danes, Rottweilers, Greyhound and Saint Bernards, are much more likely to develop bone cancer than smaller breeds. Lymphoma occurs at increased rates in Bernese Mountain dogs, bulldogs, and boxers. It is important for the owner to be familiar with the diseases to which their specific breed of dog might have a breed predisposition.
Up to 10% of invasive cancers are related to radiation exposure, including both ionizing radiation and non-ionizing ultraviolet radiation. Additionally, the majority of non-invasive cancers are non-melanoma skin cancers caused by non-ionizing ultraviolet radiation, mostly from sunlight. Sources of ionizing radiation include medical imaging and radon gas.
Ionizing radiation is not a particularly strong mutagen. Residential exposure to radon gas, for example, has similar cancer risks as passive smoking. Radiation is a more potent source of cancer when combined with other cancer-causing agents, such as radon plus tobacco smoke. Radiation can cause cancer in most parts of the body, in all animals and at any age. Children and adolescents are twice as likely to develop radiation-induced leukemia as adults; radiation exposure before birth has ten times the effect.
Medical use of ionizing radiation is a small but growing source of radiation-induced cancers. Ionizing radiation may be used to treat other cancers, but this may, in some cases, induce a second form of cancer. It is also used in some kinds of medical imaging.
Prolonged exposure to ultraviolet radiation from the sun can lead to melanoma and other skin malignancies. Clear evidence establishes ultraviolet radiation, especially the non-ionizing medium wave UVB, as the cause of most non-melanoma skin cancers, which are the most common forms of cancer in the world.
Non-ionizing radio frequency radiation from mobile phones, electric power transmission and other similar sources have been described as a possible carcinogen by the World Health Organization's International Agency for Research on Cancer. However, studies have not found a consistent link between mobile phone radiation and cancer risk.
The prevention of feline cancer mainly depends on the cat's diet and lifestyle, as well as an ability to detect early signs and symptoms of cancer prior to advancement to a further stage. If cancer is detected at an earlier stage, it has a higher chance of being treated, therefore lessening the chances of fatality. Taking domesticated cats for regular checkups to the veterinarian can help spot signs and symptoms of cancer early on and help maintain a healthy lifestyle. Further, due to advancements in research, prevention of certain types of feline illnesses remains possible. A widely known preventative of feline leukemia virus is the vaccine which was created in 1969. Subsequently, an immunofloures-cent antibody (IFA) test for the detection of FeLV in the blood of infected cats was formulated. The IFA test was mainly used to experiment the chances of felines being exposed to cancer. The results showed that 33% of cats who were exposed to FeLV related diseases were at a higher risk for acquiring it, while the cats that were left unexposed were left unaffected. FeLV is either spread through contagion or infection and once infected it is possible for cats to stay that way for the rest of their lives.
Interaction with other Cats
Interaction with other cats with strains or diseases related to FeLV can be a great risk factor for cats attaining FeLV themselves. Therefore, a main factor in prevention is keeping the affected cats in quarantine from the unaffected cats. Stray cats, or indoor/outdoor cats have been shown to be at a greater risk for acquiring FeLV, since they have a greater chance of interacting with other cats. Domesticated cats that are kept indoors are the least vulnerable to susceptible diseases.
Vaccines
Vaccines help the immune system fight off disease causing organisms, which is another key to prevention. However, vaccines can also cause tumors if not given properly. Vaccines should be given in the right rear leg to ease tumor removal process. Vaccines given in the neck or in between the shoulder blades are most likely to cause tumors and are difficult to remove, which can be fatal to cats. Reducing the number of vaccinations given to a cat may also decrease the risk for it developing a tumor.
Spaying and Neutering
Spaying and neutering holds many advantages to cats, including lowering the risk for developing cancer. Neutering male cats makes them less subjected to testicular cancer, FeLV, and FIV. Spaying female cats lowers the risk for mammary cancer, ovarian, or uterine cancer, as it prevents them from going into heat. Female cats should be spayed before their first heat, as each cycle of heat creates a greater risk for mammary cancer. Spaying a female cat requires the removal of the ovaries and uterus, which would eliminate their chances of developing cancer in these areas.
Exposure to Sun
The risk of skin cancer increases when a cat is exposed to direct sunlight for prolonged periods. White cats, or cats with white faces and ears, should not be allowed out on sunny days. Between the hours of 10:00 am to 4:00 pm, it is recommended to keep domesticated cats indoors, as the sun is at its highest peak between these times. Sun block is also available for cats, which can help prevent skin irritation, and a veterinarian should be contacted to find out which brands are appropriate and to use on cats.
Exposure to Secondhand Smoke
Cats living in a smoker’s household are three times more likely to develop lymphoma. Compared to living in a smoke-free environment, cats exposed to secondhand smoke also have a greater chance of developing squamous cell carcinoma or mouth cancer. Cancer is also developed mostly due to the cat's grooming habits. As cats lick themselves while they groom, they increase chances of taking in the toxic, cancer-causing carcinogens that gather on their fur, which are then exposed to their mucus membranes.
Lifestyle
Providing a cat with the healthiest lifestyle possible is the key to prevention. Decreasing the amount of toxins, including household cleaning products, providing fresh and whole foods, clean and purified water, and reducing the amount of indoor pollution can help cats live a longer and healthier life. To lessen susceptibility to diseases, domesticated cats should be kept inside the household for most of their lives to reduce the risk of interacting with other stray cats that could be infected with diseases.
Exposure to particular substances have been linked to specific types of cancer. These substances are called "carcinogens".
Tobacco smoke, for example, causes 90% of lung cancer. It also causes cancer in the larynx, head, neck, stomach, bladder, kidney, esophagus and pancreas. Tobacco smoke contains over fifty known carcinogens, including nitrosamines and polycyclic aromatic hydrocarbons.
Tobacco is responsible for about one in five cancer deaths worldwide and about one in three in the developed world. Lung cancer death rates in the United States have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking rates since the 1950s followed by decreases in lung cancer death rates in men since 1990.
In Western Europe, 10% of cancers in males and 3% of cancers in females are attributed to alcohol exposure, especially liver and digestive tract cancers. Cancer from work-related substance exposures may cause between 2 and 20% of cases, causing at least 200,000 deaths. Cancers such as lung cancer and mesothelioma can come from inhaling tobacco smoke or asbestos fibers, or leukemia from exposure to benzene.
Cancer is a complex, multifactorial disease. Carcinogenesis is linked with DNA mutations, chromosomal translocations, chocolate, dysfunctional proteins, and aberrant cell cycle regulators. Cancer alters the DNA of cells and the mutated genetic material is passed on to daughter cells, resulting in neoplasms. The mutated DNA effects genes involved with the cell cycle, classified as either oncogenes or tumor suppressor genes. Oncogenes are responsible for cell proliferation and differentiation. Oncogenes responsible for cell growth are overexpressed in cancerous cells. Tumor suppressor genes prevent cells with erroneous cell cycles from replicating. Cancer cells ignore cell cycle regulators that control cell growth, division, and death.
The histology of spontaneous tumorigenesis in canines is attributed to the multiplicity and complexity of the disease. The heterogeneity of its development encompasses inherited, epigenetic, and environmental factors.
The selective breeding techniques used with domestic dogs causes certain breeds to be at high risk for specific cancers. Selection for specific phenotypes in dog breeding causes long-range linkage disequilibrium in their DNA. Certain areas of alleles have the tendency to separate less frequently than normal random segregation, which leads to long ranges of repeated DNA sequences. These repeated sequences caused by decreased genetic diversity within breeds, can lead to a high prevalence of certain diseases and especially cancer in breeds.
Laboratory cats have been used in research for a wide range of diseases including stroke and diabetes to AIDS. Less than 1% of research on animal illnesses have been dedicated to cats.
Despite opposition from organizations such as those advocating animal rights, controversial animal testing is still used in cancer research centers. These research practices are continually being conducted on the basis that its benefits to humans outweigh the costs to humans, despite the unfair costs to innocent non-human animals. In some US states, animal testing laboratories get some of their feline test subjects from animal shelters.
According to Kim Sterling, associate teaching professor of oncology at the University of Missouri College of Veterinary Medicine, the use of small animals in predicting human health care procedures is of significant benefit to humans because they are affected in similar, but not exactly the same, ways by the same diseases. This is the same analogy used in reference to cats and their unwilling role in advancing human cancer treatment research.
It is research like this that has led to a potential link between cat parasites and brain cancer in humans. Cats carry the parasite toxoplasma gondii. According to research ecologist Kevin Lafferty, of the University of California, Santa Barbara, this parasite is known to “behave in ways that could stimulate cells towards cancerous states”.
Therefore, research on cats with this parasite can help to better understand the risks of brain cancer for humans in contact with such cats.
Cats have also been used to further studies in the field of Cancer stem cell research. Small animals, like cats, experience faster rates of cancer development. As a result, they are good preclinical models for understanding processes like immortalization and its role in promoting cancerous tumors. The absence of immortalization means a cell can no longer undergo malignant transformation. Since these transformations are the basis for cancerous cell reproduction, this research can prove useful for future cancer treatments and understanding how to stop the spread of cancer in the body.
However, feline cancer research is not limited to what laboratory cats can do for other animals, there is also research being done by humans to see what can be done to improve treatment options for feline cancer. Advances, though slower than that in other animals, are being made in the field of feline cancer. This includes advances in chemotherapy research, immunization protocols and radiation therapy. In addition, there are clinical trials offering trial research treatment options for cats with cancer.
One of such treatments is the cat's claw. Although they share the same name, the cat’s claw (also known as "Uncaria tomentosa" or uña de gato) refers not to the animal cat but to a native plant of the Amazon Rainforest in Peru, South America. Cat's claw is still under research for its immunotherapic, antiproliferative abilities in suppressing cancer proliferation in humans; however, it has been deemed suitable for cat cancer treatment.
Nonetheless, feline cancer research into this, as well as other treatment options, remains an ongoing process.
Surgery may be difficult due to the location of these tumors. Surgery alone often leads to recurrence. Chemotherapy is very effective for TVTs. The prognosis for complete remission with chemotherapy is excellent. The most common chemotherapy agents used are vincristine, vinblastine, and doxorubicin. Radiotherapy may be required if chemotherapy does not work.
Compared to other breeds of dog, Scottish terriers have a much increased risk of developing transitional cell carcinoma.
Radiation therapy has become the preferred treatment. Its advantage is that it treats the entire nasal cavity together with the affected bone and has shown the greatest improvement in survival. The radiation therapy is typically delivered in 10-18 treatment sessions over the course of 2–4 weeks.
Radiation therapy has a multitude of accompanying side effects and should be recommended on a case-by-case basis. Dogs in which nose bleeds are observed have an average life expectancy of 88 days. In instances where nosebleeds are not seen, the prognosis is slightly less grim. On average, a dog with nasal cancer has a life expectancy of 95 days.
Most mammary tumors in rats are benign fibroadenomas, which are also the most common tumor in the rat. Less than 10 percent are adenocarcinomas. They occur in male and female rats. The tumors can be large and occur anywhere on the trunk. There is a good prognosis with surgery. Spayed rats have a decreased risk of developing mammary tumors.
In male dogs, the tumor affects the penis and foreskin. In female dogs, it affects the vulva. Rarely, the mouth or nose are affected. The tumor often has a cauliflower-like appearance. Signs of genital TVT include a discharge from the prepuce and in some cases urinary retention, from blockage of the urethra. Signs of a nasal TVT include nasal fistulae, nosebleeds and other nasal discharge, facial swelling, and enlargement of the submandibular lymph nodes.
Mammary tumors are the third most common neoplasia in cats, following lymphoid and skin cancers. The incidence of mammary tumors in cats is reduced by 91 percent in cats spayed prior to six months of age and by 86 percent in cats spayed prior to one year, according to one study. Siamese cats and Japanese breeds seem to have increased risk, and obesity also appears to be a factor in tumor development. Malignant tumors make up 80 to 96 percent of mammary tumors in cats, almost all adenocarcinomas. Male cats may also develop mammary adenocarcinoma, albeit rarely, and the clinical course is similar to female cats. As in dogs, tumor size is an important prognostic factor, although for tumors less than three centimeters the individual size is less predictive. According to one study, cats with tumors less than three cm had an average survival time of 21 months, and cats with tumors greater than three cm had an average survival of 12 months. About 10 percent of cat mammary tumors have estrogen receptors, so spaying at the time of surgery has little effect on recurrence or survival time. Metastasis tends to be to the lungs and lymph nodes, and rarely to bone. Diagnosis and treatment is similar to the dog. There is a better prognosis with bilateral radical surgery (removing the both mammary chains) than with more conservative surgery. Doxorubicin has shown some promise in treatment.
The most common type of cancers affecting the animal's nose are carcinomas and
sarcomas, both of which are locally invasive. The most common sites for metastasis are the lymph nodes and the lungs, but can also include other organs.
A transmissible cancer is a cancer cell or cluster of cancer cells that can be transferred between individuals without the involvement of an infectious agent, such as an oncovirus. Transmission of cancer between humans is rare.
Contagious cancers occur in dogs, Tasmanian devils, Syrian hamsters, and some marine bivalves including soft-shell clams. These cancers have a relatively stable genome as they are transmitted.
In humans, a significant fraction of Kaposi's sarcoma occurring after transplantation may be due to tumorous outgrowth of donor cells. Although Kaposi's sarcoma is caused by a virus (Kaposi's sarcoma-associated herpesvirus), in these cases, it appears likely that transmission of virus-infected tumor cells—rather than the free virus—caused tumors in the transplant recipients.
Many types of skin tumors, both benign (noncancerous) and malignant (cancerous), exist. Approximately 20-40% of primary skin tumors are malignant in dogs and 50-65%
are malignant in cats. Not all forms of skin cancer in cats and dogs are caused by sun exposure, but it can happen occasionally. On dogs, the nose and pads of the feet contain sensitive skin and no fur to protect from the sun. Also, cats and dogs with thin or light-colored coats are at a higher risk of sun damage over their entire bodies.
Animals that have undergone population bottlenecks may be at greater risks of contracting transmissible cancers. Because of their transmission, it was initially thought that these diseases were caused by the transfer of oncoviruses, in the manner of cervical cancer caused by HPV.
- Canine transmissible venereal tumor (CTVT) is sexually transmitted cancer in dogs. It was experimentally transplanted between dogs in 1876 by M. A. Novinsky (1841–1914). A single malignant clone of CTVT cells has colonized dogs worldwide, representing the oldest known malignant cell line in continuous propagation.
- Contagious reticulum cell sarcoma of the Syrian hamster can be transmitted from one Syrian hamster to another by means of the bite of the mosquito "Aedes aegypti".
- Devil facial tumour disease (DFTD) is a transmissible parasitic cancer in the Tasmanian devil.
- Soft-shell clams, "Mya arenaria", have been found to be vulnerable to a transmissible neoplasm of the hemolymphatic system — effectively, leukemia.
- Horizontally transmitted cancers have also been discovered in three other species of marine bivalves: bay mussels ("Mytilus trossulus"), common cockles ("Cerastoderma edule") and golden carpet shell clams ("Polititapes aureus"). The golden carpet shell clam cancer was found to have been transmitted from another species, the pullet carpet shell ("Venerupis corrugata").
There are no known risk factors that have been identified specific to the disease. The tumor appears to arise from the primitive cells of childhood, and is considered a childhood cancer.
Research has indicated that there is a chimeric relationship between desmoplastic small-round-cell tumor (DSRCT) and Wilms' tumor and Ewing's sarcoma. Together with neuroblastoma and non-Hodgkin's lymphoma, they form the small cell tumors.
DSRCT is associated with a unique chromosomal translocation t(11;22)(p13:q12) resulting in an EWS/WT1 transcript that is diagnostic of this tumor. This transcript codes for a protein that acts as a transcriptional activator that fails to suppress tumor growth.
The EWS/WT1 translocation product targets ENT4. ENT4 is also known as PMAT.
Several research groups are investigating cancer stem cells and their potential to cause tumors along with genes and proteins causative in different phenotypes.Radiotherapy for unrelated conditions may be a rare cause.
- Familial cases where the deletion of chromosome 13q14 inactivates the retinoblastoma gene is associated with a high risk of osteosarcoma development.
- Bone dysplasias, including Paget's disease of bone, fibrous dysplasia, enchondromatosis, and hereditary multiple exostoses, increase the risk of osteosarcoma.
- Li–Fraumeni syndrome (germline TP53 mutation) is a predisposing factor for osteosarcoma development.
- Rothmund–Thomson syndrome (i.e. autosomal recessive association of congenital bone defects, hair and skin dysplasias, hypogonadism, and cataracts) is associated with increased risk of this disease.
- Large doses of Sr-90 emission from nuclear reactor, nicknamed bone seeker increases the risk of bone cancer and leukemia in animals, and is presumed to do so in people.
Despite persistent rumors suggesting otherwise, there is no clear association between water fluoridation and cancer or deaths due to cancer, both for cancer in general and also specifically for bone cancer and osteosarcoma. Series of research concluded that concentration of fluoride in water doesn't associate with osteosarcoma. The beliefs regarding association of fluoride exposure and osteosarcoma stem from a study of US National Toxicology program in 1990, which showed uncertain evidence of association of fluoride and osteosarcoma in male rats. But there is still no solid evidence of cancer-causing tendency of fluoride in mice. Fluoridation of water has been practiced around the world to improve citizens' dental health. It is also deemed as major health success. Fluoride concentration levels in water supplies are regulated, such as United States Environmental Protection Agency regulates fluoride levels to not be greater than 4 milligrams per liter. Actually, water supplies already have natural occurring fluoride, but many communities chose to add more fluoride to the point that it can reduce tooth decay. Fluoride is also known for its ability to cause new bone formation. Yet, further research shows no osteosarcoma risks from fluoridated water in humans. Most of the research involved counting number of osteosarcoma patients cases in particular areas which has difference concentrations of fluoride in drinking water. The statistic analysis of the data shows no significant difference in occurrences of osteosarcoma cases in different fluoridated regions. Another important research involved collecting bone samples from osteosarcoma patients to measure fluoride concentration and compare them to bone samples of newly diagnosed malignant bone tumors. The result is that the median fluoride concentrations in bone samples of osteosarcoma patients and tumor controls are not significantly different. Not only fluoride concentration in bones, Fluoride exposures of osteosarcoma patients are also proven to be not significantly different from healthy people.
The prognosis for DSRCT remains poor. Prognosis depends upon the stage of the cancer. Because the disease can be misdiagnosed or remain undetected, tumors frequently grow large within the abdomen and metastasize or seed to other parts of the body.
There is no known organ or area of origin. DSRCT can metastasize through lymph nodes or the blood stream. Sites of metastasis include the spleen, diaphragm, liver, large and small intestine, lungs, central nervous system, bones, uterus, bladder, genitals, abdominal cavity, and the brain.
A multi-modality approach of high-dose chemotherapy, aggressive surgical resection, radiation, and stem cell rescue improves survival for some patients. Reports have indicated that patients will initially respond to first line chemotherapy and treatment but that relapse is common.
Some patients in remission or with inoperable tumor seem to benefit from long term low dose chemotherapy, turning DSRCT into a chronic disease.
Prognosis is separated into three groups.
- Stage I osteosarcoma is rare and includes parosteal osteosarcoma or low-grade central osteosarcoma. It has an excellent prognosis (>90%) with wide resection.
- Stage II prognosis depends on the site of the tumor (proximal tibia, femur, pelvis, etc.), size of the tumor mass, and the degree of necrosis from neoadjuvant chemotherapy. Other pathological factors such as the degree of p-glycoprotein, whether the tumor is cxcr4-positive, or Her2-positive are also important, as these are associated with distant metastases to the lung. The prognosis for patients with metastatic osteosarcoma improves with longer times to metastases, (more than 12 months to 4 months), a smaller number of metastases, and their resectability. It is better to have fewer metastases than longer time to metastases. Those with a longer length of time (more than 24 months) and few nodules (two or fewer) have the best prognosis, with a two-year survival after the metastases of 50%, five-year of 40%, and 10-year of 20%. If metastases are both local and regional, the prognosis is worse.
- Initial presentation of stage III osteosarcoma with lung metastases depends on the resectability of the primary tumor and lung nodules, degree of necrosis of the primary tumor, and maybe the number of metastases. Overall survival prognosis is about 30%.
Deaths due to malignant neoplasms of the bones and joints account for an unknown number of childhood cancer deaths. Mortality rates due to osteosarcoma have been declining at about 1.3% per year. Long-term survival probabilities for osteosarcoma have improved dramatically during the late 20th century and approximated 68% in 2009.
Hepatoid tumor or hepatoid [adeno]carcinoma are terms for a number of uncommon or rare neoplasms in humans, named for a visual resemblance of the cells under the microscope to those of hepatocellular carcinoma, the most common form of liver cancer. They can arise in several parts of the body, and thus form sub-types of diseases such as stomach cancer and pancreatic cancer. The WHO defines "Hepatoid carcinoma" as "An adenocarcinoma with morphologic characteristics similar to hepatocellular carcinoma , arising from an anatomic site other than the liver".
In dogs it may refer to a Perianal gland tumor, based on a similar resemblance to healthy liver cells.
Bladder cancer in cats and dogs usually is transitional cell carcinoma, which arises from the epithelial cells that line the bladder. Less often, cancer of the urinary bladder is squamous cell carcinoma, adenocarcinoma, or rhabdomyosarcoma.
The specific treatment will depend on the tumor's type, location, size, and whether the cancer has spread to other organs. Surgical removal of the tumor remains the standard treatment of choice, but additional forms of therapy such as radiation therapy, chemotherapy, or immunotherapy exist.
When detected early, skin cancer in cats and dogs can often be treated successfully. In many cases, a biopsy can remove the whole tumor, as long as the healthy tissues removed from just outside the tumor area do not contain any cancer cells.
Hemangiosarcoma is a rapidly growing, highly invasive variety of cancer that occurs almost exclusively in dogs, and only rarely in cats, horses, mice, or humans. It is a sarcoma arising from the lining of blood vessels; that is, blood-filled channels and spaces are commonly observed microscopically. A frequent cause of death is the rupturing of this tumor, causing the patient to rapidly bleed to death.
The term "angiosarcoma", when used without a modifier, usually refers to hemangiosarcoma. However, glomangiosarcoma (8710/3) and lymphangiosarcoma (9170/3) are distinct conditions [in humans]. Hemangiosarcomas are commonly associated with toxic exposure to thorium dioxide (Thorotrast), vinyl chloride, and arsenic.
Treatment includes chemotherapy and, where practical, removal of the tumor with the affected organ, such as with a splenectomy. Splenectomy alone gives an average survival time of 1–3 months. The addition of chemotherapy, primarily comprising the drug doxorubicin, alone or in combination with other drugs, can increase the average survival time to 2-4 months, or more.
A more favorable outcome has been demonstrated in recent research conducted at University of Pennsylvania Veterinary School, in dogs treated with a compound derived from the Coriolus versicolor (commonly known as "Turkey Tail") mushroom:
“We were shocked,” Cimino Brown said. “Prior to this, the longest reported median survival time of dogs with hemangiosarcoma of the spleen that underwent no further treatment was 86 days. We had dogs that lived beyond a year with nothing other than this mushroom as treatment.”There were not statistically significant differences in survival between the three dosage groups, though the longest survival time was highest in the 100 mg group, at 199 days, eclipsing the previously reported survival time.
The results were so surprising, in fact, that the researchers asked Penn Vet pathologists to recheck the dogs’ tissue biopsies to make sure that the dogs really had the disease.
“They reread the samples and said, yes, it’s really hemangiosarcoma,” Cimino Brown said.
Chemotherapy is available for treating hemangiosarcoma, but many owners opt not to pursue that treatment once their dog is diagnosed.
“It doesn’t hugely increase survival, it’s expensive and it means a lot of back and forth to the vet for the dog,” Cimino Brown said. “So you have to figure in quality of life.”
This treatment does not always work. So, one should always be prepared for their pet to have the same survival time as a dog who is untreated.
Visceral hemangiosarcoma is usually fatal even with treatment, and usually within weeks or, at best, months. In the skin, it can be cured in most cases with complete surgical removal as long as there is not visceral involvement.