Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
Genetic genealogy has identified a specific location of a gene on a chromosome for Klippel-Feil Syndrome. Mutations in the GDF6 and GDF3 genes have also been identified to cause the disease, although some people with Klippel–Feil syndrome do not have identified mutations in the GDF6 or GDF3 genes. In this case, the cause of the condition in these individuals is unknown. GDF6 and GDF3 genes provide the body with instructions for making proteins involved in regulating the growth and maturation of bone and cartilage. These proteins actively regulate cell growth in embryonic and adult tissue. GDF6 specifically is involved in the formation of vertebral bones, among others, and establishing boundaries between bones in skeletal development while GDF3 is involved with bone and cartilage growth. Mutations cause reductions in these functional proteins but, it is unclear exactly how a shortage in these proteins leads to incomplete separation of the vertebrae in people with Klippel–Feil syndrome. However, when the GDF6 gene was knocked out in mice, the result was the fusion of bones. Only by identifying the link between the genetic cause and the phenotypic pathoanatomy of Klippel–Feil syndrome will we be able to rationalize the heterogeneity of the syndrome.
These mutations can be inherited in two ways:
- Autosomal dominant inheritance, where one copy of the altered gene in each cell is sufficient to cause the disorder, is especially associated with C2-C3 fusion.
- Autosomal recessive inheritance, where both copies of a gene contain mutations, is especially associated with C5-C6 fusion.
- Another autosomal dominant form (mapped on locus 8q22.2) known as Klippel–Feil syndrome with laryngeal malformation has been identified. It is also known as Segmentation syndrome 1.
Clinodactyly is an autosomal dominant trait that has variable expressiveness and incomplete penetrance.
Clinodactyly can be passed through inheritance and presents as either an isolated anomaly or a component manifestation of a genetic syndrome. Many syndromes are associated with clinodactyly, including Down Syndrome, Turner syndrome, Aarskog syndrome, Carpenter syndrome, Seckel syndrome, Cornelia de Lange syndrome, orofaciodigital syndrome 1, 13q deletion syndrome, XXYY syndrome and Silver–Russell syndrome.
When identified prenatally, for example during obstetric ultrasonography, it may be an indication for intrauterine sampling for fetal chromosome analysis as it is statistically correlated with increased risk of chromosome aberration in the fetus.
Clinodactyly (from the Ancient Greek κλίνειν ' meaning "to bend" and δάκτυλος ' meaning "digit") is a medical term describing the curvature of a digit (a finger or toe) in the plane of the palm, most commonly the fifth finger (the "little finger") towards the adjacent fourth finger (the "ring finger").
It is a fairly common isolated anomaly which often goes unnoticed, but also occurs in combination with other abnormalities in certain genetic syndromes.
Many vertebrates, especially reptiles, have cervical ribs as a normal part of their anatomy rather than a pathological condition. Some sauropods had exceptionally long cervical ribs; those of "Mamenchisaurus hochuanensis" were nearly 4 meters long.
In birds, the cervical ribs are small and completely fused to the vertebrae.
In mammals the ventral parts of the transverse processes of the cervical vertebrae are the fused-on cervical ribs.
Recent studies have also found a high percent of cervical ribs in woolly mammoths. It is believed that the decline in mammoth numbers may have forced inbreeding within the species which in turn has increased the number of mammoths being born with cervical ribs. Cervical ribs have been connected with leukaemia in human children, so it has given scientists new evidence to believe that the mammoth's extinction was attributed to the condition.
The term thanatophoric is Greek for "death bearing". Children with this condition are usually stillborn or die shortly after birth from respiratory failure, however a small number of individuals have survived into childhood and a very few beyond. Survivors have difficulty breathing on their own and require respiratory support such as high flow oxygen through a canula or ventilator support via tracheostomy. There may also be evidence of spinal stenosis and seizures.
The oldest known living TD survivor is a 29-year-old female. One male lived to be 26 years old. Another male lived to age 20. TD survivor, Chrisopher Álvarez, 18, is Colombian living in New York. Two children with TD aged 10 and 12, a male and a female, are known in Germany. There is also a 6-year-old male living with TD and two 1-year old males.
A cervical rib in humans is an extra rib which arises from the seventh cervical vertebra. Sometimes known as "neck ribs", their presence is a congenital abnormality located above the normal first rib. A cervical rib is estimated to occur in 0.2% (1 in 500 people) to 0.5% of the population. People may have a cervical rib on the right, left or both sides.
Most cases of cervical ribs are not clinically relevant and do not have symptoms; cervical ribs are generally discovered incidentally. However, they vary widely in size and shape, and in rare cases, they may cause problems such as contributing to thoracic outlet syndrome, because of pressure on the nerves that may be caused by the presence of the rib.
A cervical rib represents a persistent ossification of the C7 lateral costal element. During early development, this ossified costal element typically becomes re-absorbed. Failure of this process results in a variably elongated transverse process or complete rib that can be anteriorly fused with the T1 first rib below.
On imaging, cervical ribs can be distinguished because their transverse processes are directed inferolaterally, whereas those of the adjacent thoracic spine are directed anterolaterally.
The specific cause of camptodactyly remains unknown, but there are a few deficiencies that lead to the condition. A deficient lumbrical muscle controlling the flexion of the fingers, and abnormalities of the flexor and extensor tendons.
A number of congenital syndromes may also cause camptodactyly:
- Jacobsen syndrome
- Beals Syndrome
- Blau syndrome
- Freeman-Sheldon syndrome
- Cerebrohepatorenal syndrome
- Weaver syndrome
- Christian syndrome 1
- Gordon Syndrome
- Jacobs arthropathy-camptodactyly syndrome
- Lenz microphthalmia syndrome
- Marshall-Smith-Weaver syndrome
- Oculo-dento-digital syndrome
- Tel Hashomer camptodactyly syndrome
- Toriello-Carey syndrome
- Stuve-Wiedemann syndrome
- Loeys-Dietz syndrome
- Fryns syndrome
- Marfan's syndrome
- Carnio-carpo-tarsal dysthropy
Camptodactyly is a medical condition that causes one or more fingers to be permanently bent. It involves fixed flexion deformity of the proximal interphalangeal joints. The fifth finger is always affected.
Camptodactyly can be caused by a genetic disorder. In that case, it is an autosomal dominant trait that is known for its incomplete genetic expressivity. This means that when a person has the genes for it, the condition may appear in both hands, one, or neither. A linkage scan proposed that the chromosomal locus of camptodactyly was 3q11.2-q13.12.
Beals syndrome (congenital contractural arachnodactyly, Beals–Hecht syndrome) is a rare congenital connective tissue disorder. Beals syndrome has only recently been described as a syndrome distinct from Marfan's syndrome. Ricky Berwick is an internet star with this disease.
It was characterized in 1972.
It is associated with FBN2.
It is caused by a mutation in FBN2 gene on chromosome 5q23. Contractures of varying degrees at birth, mainly involving the large joints, are present in all affected children. Elbows, knees and fingers are most commonly involved. The contractures may be mild and tend to reduce in severity, but residual camptodactyly always remains present. The arm span exceeds body height but the discrepancy may be underestimated due to contractures of elbows and fingers. The same holds for the lower body portion with knee contractures. The most serious complication in CCA is scoliosis and sometimes kyphoscoliosis mandating surgery.
Wobbler disease is a catchall term referring to several possible malformations of the cervical vertebrae that cause an unsteady (wobbly) gait and weakness in dogs and horses. A number of different conditions of the cervical (neck) spinal column cause similar clinical signs. These conditions may include malformation of the vertebrae, intervertebral disc protrusion, and disease of the interspinal ligaments, ligamenta flava, and articular facets of the vertebrae. Wobbler disease is also known as cervical vertebral instability, cervical spondylomyelopathy (CSM), and cervical vertebral malformation (CVM). In dogs, the disease is most common in large breeds, especially Great Danes and Doberman Pinschers. In horses, it is not linked to a particular breed, though it is most often seen in tall, race-bred horses of Thoroughbred or Standardbred ancestry. It is most likely inherited to at least some extent in dogs and horses.
It can be associated with missense mutations in fibroblast growth factor receptor-3. It is inherited in an autosomal dominant manner.
Most people with mild to moderate symptoms do not get worse. While many improve in the short term after surgery this improvement decreases somewhat with time. A number of factors present before surgery are able to predict the outcome after surgery, with people with depression, cardiovascular disease and scoliosis doing in general worse while those with more severe stenosis beforehand and better overall health doing better.
The natural evolution of disc disease and degeneration leads to stiffening of the intervertebral joint. This leads to osteophyte formation—a bony overgrowth about the joint. This process is called spondylosis, and is part of the normal aging of the spine. This has been seen in studies of normal and diseased spines. Degenerative changes begin to occur without symptoms as early as age 25–30 years. It is not uncommon for people to experience at least one severe case of low back pain by the age of 35 years. This can be expected to improve and become less prevalent as the individual develops osteophyte formation around the discs.
In the US workers' compensation system, once the threshold of two major spinal surgeries is reached, the vast majority of workers will never return to any form of gainful employment. Beyond two spinal surgeries, any more are likely to make the patient worse, not better.
Wobbler disease is probably inherited in the Borzoi, Great Dane, Doberman, and Basset Hound. Instability of the vertebrae of the neck (usually the caudal neck) causes spinal cord compression. In younger dogs such as Great Danes less than two years of age, wobbler disease is caused by stenosis (narrowing) of the vertebral canal related to degeneration of the dorsal articular facets and subsequent thickening of the associated joint capsules and ligaments. A high-protein diet may contribute to its development. In middle-aged and older dogs such as Dobermans, intervertebral disc disease leads to bulging of the disc or herniation of the disc contents, and the spinal cord is compressed. In Great Danes, the C to C vertebrae are most commonly affected; in Dobermans, the C to C vertebrae are affected.
The disease tends to be gradually progressive. Symptoms such as weakness, ataxia, and dragging of the toes start in the rear legs. Dogs often have a crouching stance with a downward flexed neck. The disease progresses to the front legs, but the symptoms are less severe. Neck pain is sometimes seen. Symptoms are usually gradual in onset, but may progress rapidly following trauma. X-rays may show misaligned vertebrae and narrow disk spaces, but it is not as effective as a myelogram, which reveals stenosis of the vertebral canal. Magnetic resonance imaging has been shown to be more effective at showing the location, nature, and severity of spinal cord compression than a myelogram. Treatment is either medical to control the symptoms, usually with corticosteroids and cage rest, or surgical to correct the spinal cord compression. The prognosis is guarded in either case. Surgery may fully correct the problem, but it is technically difficult and relapses may occur. Types of surgery include ventral decompression of the spinal cord (ventral slot technique), dorsal decompression, and vertebral stabilization. One study showed no significant advantage to any of the common spinal cord decompression procedures. Another study showed that electroacupuncture may be a successful treatment for Wobbler disease. A new surgical treatment using a proprietary medical device has been developed for dogs with disc-associated wobbler disease. It implants an artificial disc (cervical arthroplasty) in place of the affected disc space.
The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate, in which the notochord (a flexible rod of uniform composition) found in all chordates has been replaced by a segmented series of bones—vertebrae separated by intervertebral discs. The vertebral column houses the spinal canal, a cavity that encloses and protects the spinal cord.
There are about 50,000 species of animals that have a vertebral column. The human vertebral column is one of the most-studied examples.
Studies have shown that obesity of the mother increases the risk of neural tube disorders such as iniencephaly by 1.7 fold while severe obesity increases the risk by over 3 fold.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
The injury is immediately fatal in 70% of cases, with an additional 15% surviving to the emergency room, but perishing during their hospital stay. A basion-dental interval of 16mm or greater is associated with mortality. In those with neurologic deficits, survival is unlikely.
Cervical spinal stenosis is a bone disease involving the narrowing of the spinal canal at the level of the neck. It is frequently due to chronic degeneration, but may also be congenital. Treatment is frequently surgical.
Cervical spinal stenosis is one of the most common forms of spinal stenosis, along with lumbar spinal stenosis (which occurs at the level of the lower back instead of in the neck). Thoracic spinal stenosis, at the level of the mid-back, is much less common. Cervical spinal stenosis can be far more dangerous by compressing the spinal cord. Cervical canal stenosis may lead to serious symptoms such as major body weakness and paralysis. Such severe spinal stenosis symptoms are virtually absent in lumbar stenosis, however, as the spinal cord terminates at the top end of the adult lumbar spine, with only nerve roots (cauda equina) continuing further down. Cervical spinal stenosis is a condition involving narrowing of the spinal canal at the level of the neck. It is frequently due to chronic degeneration, but may also be congenital or traumatic. Treatment frequently is surgical.
There are many recognized spinal diseases, some more common than others. Spinal disease also includes cervical spine diseases, which are diseases in the vertebrae of the neck. A lot of flexibility exists within the cervical spine and because of that, it is common for an individual to damage that area, especially over a long period of time. Some of the common cervical spine diseases include degenerative disc disease, cervical stenosis, and cervical disc herniation. Degenerative disc disease occurs over time when the discs within each vertebra in the neck begin to fall apart and begin to disintegrate. Because each vertebra can cause pain in different areas of the body, the pain from the disease can be sensed in the back, leg, neck area, or even the arms. When the spinal canal begins to lose its gap and gets thinner, it can cause pain in the neck, which can also cause a numb feeling in the arms and hands. Those are symptoms of cervical stenosis disease. The discs between each vertebra have fibers that can begin to deteriorate, and this can occur in cervical disc herniation. This disease is less common in younger people as it is usually a function of aging.
The Jefferson fracture can be associated with this injury, with the C1 ring, or atlas, being fractured in several places, allowing the spine to shift forward relative to the skull base. The Hangman's fracture which is a fracture of the C2 vertebral body or dens of the cervical spine upon which the skull base sits to allow the head to rotate, can also be associated with atlanto-occipital dislocation. Despite its eponym, the fracture is not usually associated with a hanging mechanism of injury.
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
Once a mother has given birth to a child with iniencephaly, risk of reoccurrence increases to 1-5%.
Spondylosis is caused from years of constant abnormal pressure, from joint subluxation, sports, or poor posture, being placed on the vertebrae, and the discs between them. The abnormal stress causes the body to form new bone in order to compensate for the new weight distribution. This abnormal weight bearing from bone displacement will cause spondylosis to occur. Poor postures and loss of the normal spinal curves can lead to spondylosis as well. Spondylosis can affect a person at any age; however, older people are more susceptible.
Radiographic features include delayed epiphyseal ossification at the hips and knees, platyspondyly with irregular end plates and narrowed joint spaces, diffuse early osteoarthritic changes (in the spine and hands), mild brachydactyly and mild metaphyseal abnormalities which predominantly involve the hips and knees.