Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The evidence linking vitamin C supplements with an increased rate of kidney stones is inconclusive. The excess dietary intake of vitamin C might increase the risk of calcium oxalate stone formation, in practice this is rarely encountered. The link between vitamin D intake and kidney stones is also tenuous. Excessive vitamin D supplementation may increase the risk of stone formation by increasing the intestinal absorption of calcium; correction of a deficiency does not.
Diets in Western nations typically contain a large proportion of animal protein. Consumption of animal protein creates an acid load that increases urinary excretion of calcium and uric acid and reduced citrate. Urinary excretion of excess sulfurous amino acids (e.g., cysteine and methionine), uric acid, and other acidic metabolites from animal protein acidifies the urine, which promotes the formation of kidney stones. Low urinary citrate excretion is also commonly found in those with a high dietary intake of animal protein, whereas vegetarians tend to have higher levels of citrate excretion. Low urinary citrate, too, promotes stone formation.
There is a genetic predisposition, first-degree relatives have a great increase in the chance of VUR. The gene frequency is estimated to be 1:600. The American Academy of Pediatrics recommends that children from 2 to 24 months presenting with a UTI should be investigated for VUR.
In kidney stones, calcium oxalate is the most common mineral type (see Nephrolithiasis). Uric acid is the second most common mineral type, but an "in vitro" study showed uric acid stones and crystals can promote the formation of calcium oxalate stones.
Stones can cause disease by several mechanisms:
- Irritation of nearby tissues, causing pain, swelling, and inflammation
- Obstruction of an opening or duct, interfering with normal flow and disrupting the function of the organ in question
- Predisposition to infection (often due to disruption of normal flow)
A number of important medical conditions are caused by stones:
- Nephrolithiasis (kidney stones)
- Can cause hydronephrosis (swollen kidneys) and renal failure
- Can predispose to pyelonephritis (kidney infections)
- Can progress to urolithiasis
- Urolithiasis (urinary bladder stones)
- Can progress to bladder outlet obstruction
- Cholelithiasis (gallstones)
- Can predispose to cholecystitis (gall bladder infections) and ascending cholangitis (biliary tree infection)
- Can progress to choledocholithiasis (gallstones in the bile duct) and gallstone pancreatitis (inflammation of the pancreas)
- Gastric calculi can cause colic, obstruction, torsion, and necrosis.
The prognosis of hydronephrosis is extremely variable, and depends on the condition leading to hydronephrosis, whether one (unilateral) or both (bilateral) kidneys are affected, the pre-existing kidney function, the duration of hydronephrosis (acute or chronic), and whether hydronephrosis occurred in developing or mature kidneys.
For example, unilateral hydronephrosis caused by an obstructing stone will likely resolve when the stone passes, and the likelihood of recovery is excellent. Alternately, severe bilateral prenatal hydronephrosis (such as occurs with posterior urethral valves) will likely carry a poor long-term prognosis, because obstruction while the kidneys are developing causes permanent kidney damage even if the obstruction is relieved postnatally.
Hydronephrosis can be a cause of pyonephrosis - which is a urological emergency.
Urinary stones may be composed of the following substances:
- Calcium oxalate monohydrate (whewellite)
- Calcium oxalate dihydrate (weddellite)
- Calcium phosphate
- Magnesium phosphate
- Ammonium phosphate
- Ammonium magnesium phosphate (struvite)
- Calcium hydroxyphosphate (apatite)
- Uric acid and its salts (urates)
- Cystine
- Xanthine
- Indigotin (rare)
- Urostealith (rare)
- Sulfonamide (rare)
Bladder stones may occur whenever the kidneys, bladder, or ureters become inflamed, which may occur when the urine becomes too concentrated or when the body becomes dehydrated. Minerals such as calcium and magnesium crystallize into the stones, which then can cause such symptoms as lower back or abdominal pain or difficulty with urination. The use of urinary catheters may cause a bladder stone. Individuals who are paralyzed or are unable to adequately pass urine may require the use of small plastic tubes (catheters) placed into the bladder. The use of these tubes may lead to an infection, which irritates the bladder, resulting in stone formation. Finally, a kidney stone may travel down the ureter into the bladder and become a bladder stone. There is some evidence indicating that chronic irritation of the bladder by retained stones may increase the chance of bladder cancer. Urinary schistosomiasis, a disease caused by the digenean trematode "Schistosoma haematobium", has been implicated in the development of vesical calculi. However, evidence accumulated thus far has not supported this hypothesis.
Cystinuria is an inherited autosomal recessive disease that is characterized by high concentrations of the amino acid cystine in the urine, leading to the formation of cystine stones in the kidneys, ureter, and bladder. It is a type of aminoaciduria.
It has been estimated that VUR is present in more than 10% of the population. Younger children are more prone to VUR because of the relative shortness of the submucosal ureters. This susceptibility decreases with age as the length of the ureters increases as the children grow. In children under the age of 1 year with a urinary tract infection, 70% will have VUR. This number decreases to 15% by the age of 12. Although VUR is more common in males antenatally, in later life there is a definite female preponderance with 85% of cases being female.
Depending on the cause, a proportion of patients (5–10%) will never regain full kidney function, thus entering end-stage kidney failure and requiring lifelong dialysis or a kidney transplant. Patients with AKI are more likely to die prematurely after being discharged from hospital, even if their kidney function has recovered.
The risk of developing chronic kidney disease is increased (8.8-fold).
While most cases of horseshoe kidneys are asymptomatic and discovered upon autopsy, the condition may increase the risk for:
- Kidney obstruction – abnormal placement of ureter may lead to obstruction and dilation of the kidney.
- Kidney infections – associated with vesicoureteral reflux.
- Kidney stones – deviant orientation of kidneys combined with slow urine flow and kidney obstruction may lead to kidney stones.
- Kidney cancer – increased risk of renal cancer, especially Wilms' tumor, transitional cell carcinoma, and an occasional case report of carcinoid tumor. Despite increased risk, the overall risk is still relatively low.
The prevalence of horseshoe kidneys in females with Turner Syndrome is about 15%.
It can be associated with trisomy 18.
It can be associated with venous anomalies like left sided IVC 9.
The "APOL1" gene has been proposed as a major genetic risk locus for a spectrum of nondiabetic renal failure in individuals of African origin, these include HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies. Two western African variants in APOL1 have been shown to be associated with end stage kidney disease in African Americans and Hispanic Americans.
Mortality after AKI remains high. Overall it is 20%, 30% if the patient is referred to nephrology, 50% if dialyzed, and 70% if on ICU.
If AKI develops after major surgery (13.4% of all people who have undergone major surgery) the risk of death is markedly increased (over 12-fold).
Duplicated ureter is the most common renal abnormality, occurring in approximately 1% of the population.
Race: Duplicated ureter is more common in Caucasians than in African-Americans.
Sex: Duplicated ureter is more common in females. However, this may be due to the higher frequency of urinary tract infections in females, leading to a higher rate of diagnosis of duplicated ureter.
This disease is known to occur in at least four mammalian species: humans, domestic canines, domestic ferrets and a wild canid, the maned wolf of South America.
Cystine uroliths have been demonstrated, usually in male dogs, from approximately 70 breeds including the Australian cattle dog, Australian shepherd, Basenji, Basset, Bullmastiff, Chihuahua, Scottish deerhound, Scottish terrier, Staffordshire terrier, Welsh corgi, and both male and female Newfoundland dogs.
Chronic kidney disease (CKD) has numerous causes. The most common causes of CKD are diabetes mellitus and long-term, uncontrolled hypertension. Polycystic kidney disease is another well-known cause of CKD. The majority of people afflicted with polycystic kidney disease have a family history of the disease. Other genetic illnesses affect kidney function, as well.
Overuse of common drugs such as ibuprofen, and acetaminophen (paracetamol) can also cause chronic kidney disease.
Some infectious disease agents, such as hantavirus, can attack the kidneys, causing kidney failure.
The long-term use of lithium, a medication commonly used to treat bipolar disorder and schizoaffective disorders, is known to cause nephropathy.
The American Urological Association recommends ongoing monitoring of children with VUR until the abnormality resolves or is no longer clinically significant. The recommendations are for annual evaluation of blood pressure, height, weight, analysis of the urine, and kidney ultrasound.
Hydronephrosis is the result of any of several abnormal pathophysiological occurrences. Structural abnormalities of the junctions between the kidney, ureter, and bladder that lead to hydronephrosis can occur during fetal development. Some of these congenital defects have been identified as inherited conditions, however the benefits of linking genetic testing to early diagnosis have not been determined. Other structural abnormalities could be caused by injury, surgery, or radiation therapy.
Compression of one or both ureters can also be caused by other developmental defects not completely occurring during the fetal stage such as an abnormally placed vein, artery, or tumor. Bilateral compression of the ureters can occur during pregnancy due to enlargement of the uterus. Changes in hormone levels during this time may also affect the muscle contractions of the bladder, further complicating this condition.
Sources of obstruction that can arise from other various causes include kidney stones, blood clots, or retroperitoneal fibrosis.
The obstruction may be either partial or complete and can occur anywhere from the urethral meatus to the calyces of the renal pelvis. Hydronephrosis can also result from the reverse flow of urine from the bladder back into the kidneys. This reflux can be caused by some of the factors listed above as well as compression of the bladder outlet into the urethra by prostatic enlargement or impaction of feces in the colon, as well as abnormal contractions of bladder muscles resulting from neurological dysfunction or other muscular disorders.
Despite expensive treatments, lupus nephritis remains a major cause of morbidity and mortality in people with relapsing or refractory lupus nephritis.
Reflux nephropathy is kidney damage (nephropathy) due to urine flowing backward (reflux) from the bladder toward the kidneys; the latter is called vesicoureteral reflux (VUR). Longstanding VUR can result in small and scarred kidneys during the first five years of life in affected children. The end results of reflux nephropathy can include high blood pressure, excessive protein loss in the urine, and eventually kidney failure.
When reflux nephropathy is suspected as a cause of kidney disease, other conditions to consider include chronic pyelonephritis, obstructive uropathy, and analgesic overuse.
The term "reflux nephropathy" was introduced in 1973.
If left untreated, complications may arise including abscess formation, peritonitis, sepsis, and damage to the urinary tract by fibrosis and granuloma formation. It is recommended, as a first step, to drain the lesion with ultrasound or CT guidance. If a patient has an underlying obstructive problem it needs to be addressed according to its cause.
Complications of analgesic nephropathy include pyelonephritis and end-stage kidney disease. Risk factors for poor prognosis include recurrent urinary tract infection and persistently elevated blood pressure. Analgesic nephropathy also appears to increase the risk of developing cancers of the urinary system.
Renal colic typically begins in the flank and often radiates to the hypochondrium (the part of the anterior abdominal wall below the costal margins) or the groin. It is typically colicky (comes in waves) due to ureteric peristalsis, but may be constant. It is often described as one of the strongest pain sensations known.
Although this condition can be very painful, kidney stones usually cause no permanent physical damage. The experience is said to be traumatizing due to pain, and the experience of passing blood, blood clots, and pieces of the stone. Depending on the sufferer's situation, nothing more than drinking significant amounts of water may be called for; in other instances, surgery may be needed. Preventive treatment can be instituted to minimize the likelihood of recurrence.