Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the general population, the frequency of medullary sponge kidney disease is reported to be 0.02–0.005%; that is, 1 in 5000 to 1 in 20,000. The frequency of medullary sponge kidney has been reported by various authors to be 1221% in patients with kidney stones. The disease is bilateral in 70% of cases.
Complications associated with medullary sponge kidney include the following:
- Kidney stones
- Urinary tract infection (UTI)
- Blood in the urine
- Distal renal tubular acidosis (Type 1 RTA)
- Chronic kidney disease (rarely)
- Marked chronic pain
Many forms of cystic kidney disease can be detected in children prior to birth. Abnormalities which only affect one kidney are unlikely to cause a problem with the healthy arrival of a baby. Abnormalities which affect both kidneys can have an effect on the baby's amniotic fluid volume which can in turn lead to problems with lung development. Some forms of obstruction can be very hard to differentiate from cystic renal disease on early scans.
The "APOL1" gene has been proposed as a major genetic risk locus for a spectrum of nondiabetic renal failure in individuals of African origin, these include HIV-associated nephropathy (HIVAN), primary nonmonogenic forms of focal segmental glomerulosclerosis, and hypertension affiliated chronic kidney disease not attributed to other etiologies. Two western African variants in APOL1 have been shown to be associated with end stage kidney disease in African Americans and Hispanic Americans.
The long-term use of lithium, a medication commonly used to treat bipolar disorder and schizoaffective disorders, is known to cause nephropathy.
Despite expensive treatments, lupus nephritis remains a major cause of morbidity and mortality in people with relapsing or refractory lupus nephritis.
Chronic kidney disease (CKD) has numerous causes. The most common causes of CKD are diabetes mellitus and long-term, uncontrolled hypertension. Polycystic kidney disease is another well-known cause of CKD. The majority of people afflicted with polycystic kidney disease have a family history of the disease. Other genetic illnesses affect kidney function, as well.
Overuse of common drugs such as ibuprofen, and acetaminophen (paracetamol) can also cause chronic kidney disease.
Some infectious disease agents, such as hantavirus, can attack the kidneys, causing kidney failure.
Scientists from the Broad Institute, Cambridge, Massachusetts identified the genetic cause of UKD as mutations in the MUC1 gene.
Cystic kidney disease refers to a wide range of hereditary, developmental, and acquired conditions. With the inclusion of neoplasms with cystic changes, over 40 classifications and subtypes have been identified. Depending on the disease classification, the presentation of disease may be from birth, or much later into adult life. Cystic disease may involve one or both kidneys and may or may not occur in the presence of other anomalies. A higher incidence of cystic kidney disease is found in the male population and prevalence increases with age. Renal cysts have been reported in more than 50% of patients over the age of 50. Typically, cysts grow up to 2.88 mm annually and cause related pain and/or hemorrhage.
Of the cystic kidney diseases, the most common is Polycystic kidney disease; having two prevalent sub-types: autosomal recessive and autosomal dominant polycystic kidney disease. Autosomal Recessive Polycystic Kidney Disease (ARPKD) is primarily diagnosed in infants and young children. Autosomal dominant polycystic kidney disease (ADPKD) is most often diagnosed in adulthood.
Another example of cystic kidney disease is Medullary sponge kidney.
Minimal change disease is most common in very young children but can occur in older children and adults. It is by far the most common cause of nephrotic syndrome in children between the ages of 1 and 7, accounting for the majority (about 90%) of these diagnoses. Among teenagers who develop nephrotic syndrome, it is caused by minimal change disease about half the time. It can also occur in adults but accounts for less than 20% of adults diagnosed with nephrotic syndrome. Among children less than 10 years of age, boys seem to be more likely to develop minimal change disease than girls. Minimal change disease is being seen with increasing frequency in adults over the age of 80.
People with one or more autoimmune disorders are at increased risk of developing minimal change disease. Having minimal change disease also increases the chances of developing other autoimmune disorders.
Minimal change disease has been called by many other names in the medical literature, including minimal change nephropathy, minimal change nephrosis, minimal change nephrotic syndrome, minimal change glomerulopathy, foot process disease (referring to the foot processes of the podocytes), nil disease (referring to the lack of pathologic findings on light microscopy), nil lesions, lipid nephrosis, and lipoid nephrosis.
Medullary cystic kidney disease (MCKD) is an autosomal dominant kidney disorder characterized by tubulointerstitial sclerosis leading to end-stage renal disease. Because the presence of cysts is neither an early nor a typical diagnostic feature of the disease, and because at least 4 different gene mutations may give rise to the condition, the name autosomal dominant tubulointerstitial kidney disease (ADTKD) has been proposed, to be appended with the underlying genetic variant for a particular individual. Importantly, if cysts are found in the medullary collecting ducts they can result in a shrunken kidney, unlike that of polycystic kidney disease. There are two known forms of medullary cystic kidney disease, mucin-1 kidney disease 1 (MKD1) and mucin-2 kidney disease/uromodulin kidney disease (MKD2). A third form of the disease occurs due to mutations in the gene encoding renin (ADTKD-REN), and has formerly been known as familial juvenile hyperuricemic nephropathy type 2.
Mortality is indirect and caused by complications. After cholangitis occurs, patients typically die within 5–10 years.
Caroli disease is typically found in Asia, and diagnosed in persons under the age of 22. Cases have also been found in infants and adults. As medical imaging technology improves, diagnostic age decreases.
Life expectancy with Fabry disease for males was 58.2 years, compared with 74.7 years in the general population, and for females 75.4 years compared with 80.0 years in the general population, according to registry data from 2001 to 2008. The most common cause of death was cardiovascular disease, and most of those had received kidney replacements.
VHL disease has an incidence of one in 36,000 births. There is over 90% penetrance by the age of 65. Age at diagnosis varies from infancy to age 60–70 years, with an average patient age at clinical diagnosis of 26 years.
This disease is more common in women and an association with the gene FLT4 has been described. FLT4 codes for VEGFR-3, which is implicated in development of the lymphatic system.
Milroy's disease is also known as primary or hereditary lymphedema type 1A or early onset lymphedema.
It is a very rare disease with only about 200 cases reported in the medical literature. Milroy's disease is an autosomal dominant condition caused by a mutation in the FLT4 gene which encodes of the vascular endothelial growth factor receptor 3 (VEGFR-3) gene located on the long arm (q) on chromosome 5 (5q35.3).
In contrast to Milroy's disease (early onset lymphedema type 1A,) which typically has its onset of swelling and edema at birth or during early infancy, hereditary lymphedema type II, known as Meige disease, has its onset around the time of puberty. Meige disease is also an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). About 2000 cases have been identified. A third type of hereditary lymphedema, that has an onset after the age of 35 is known as lymph-edema tarda.
Fabry disease is estimated to occur in one in 40,000 to one in 120,000 live births.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
The causes of Kyrle disease are unclear and can be idiopathic. The only correlation that has shown light is the frequent association with an underlying disorder, such as, diabetes mellitus, chronic renal failure, hyperlipoproteinemia, hepatic abnormalities, and congestive heart failure. However, there had been cases where Kyrle disease was seen without any conjunction with the previous mentioned disorders. Due to the causes of Kyrle disease is unknown, the best way to prevent the disease is to prevent the disorders that are usually reported in conjunction with it.
Milroy's disease (MD) is a familial disease characterized by lymphedema, commonly in the legs, caused by congenital abnormalities in the lymphatic system. Disruption of the normal drainage of lymph leads to fluid accumulation and hypertrophy of soft tissues. It is also known as Milroy disease, Nonne-Milroy-Meige syndrome and hereditary lymphedema.
It was named by Sir William Osler for William Milroy, a Canadian physician, who described a case in 1892, though it was first described by Rudolf Virchow in 1863.
There is no way to reverse VHL mutations, but early recognition and treatment of specific manifestations of VHL can substantially decrease complications and improve quality of life. For this reason, individuals with VHL disease are usually screened routinely for retinal angiomas, CNS hemangioblastomas, clear-cell renal carcinomas and pheochromocytomas. CNS hemangioblastomas are usually surgically removed if they are symptomatic. Photocoagulation and cryotherapy are usually used for the treatment of symptomatic retinal angiomas, although anti-angiogenic treatments may also be an option. Renal tumours may be removed by a partial nephrectomy or other techniques such as radiofrequency ablation.
Urbach–Wiethe disease is very rare; there are fewer than 300 reported cases in medical literature. Although Urbach–Wiethe disease can be found worldwide, almost a quarter of reported diagnoses are in South Africa. Many of these are in patients of Dutch, German, and Khoisan ancestry. This high frequency is thought to be due to the founder effect. Due to its recessive genetic cause and the ability to be a carrier of the disease without symptoms, Urbach–Wiethe disease often runs in families. In some regions of South Africa, up to one in 12 individuals may be carriers of the disease. Most of the case studies involving Urbach–Wiethe disease patients involve only one to three cases and these cases are often in the same family. Due to its low incidence, it is difficult to find a large enough number of cases to adequately study the disease.
Extramammary Paget's disease is usually seen in isolation and is associated with an underlying invasive malignancy about 12% of the time. It is associated with an underlying adnexal malignancy about 24% of the time. Paget's disease of the breast is almost always associated with an underlying invasive malignancy, i.e. breast cancer (e.g. mammary ductal carcinoma).
There are no currently known causes of this disease. There are studies currently proposing several theories of the causes which include inflammation of the adipose tissue, nervous system malfunction and endocrine malfunction. None of the theories that are currently proposed have been found viable. Since little is known about Dercum's disease, there are currently no known modes of prevention. Some hypotheses state that maintaining a healthy weight and diet can help prevent Dercum's although it has not been proven.
Dercum's disease can affect people of any gender and of any age. The majority of cases are linked to women between the ages of 45 and 60, who are overweight and postmenopausal. Due to the difficulty of diagnosis of this disease, many cases are underreported or misdiagnosed and it is difficult to understand what part of the population is affected by it the most.