Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Reis-Bücklers corneal dystrophy is not associated with any systemic conditions.
Few studies have examined the prevalence of FCED on a large scale. First assessed in a clinical setting, Fuchs himself estimated the occurrence of dystrophia epithelialis corneae to be one in every 2000 patients; a rate that is likely reflective of those who progress to advanced disease. Cross-sectional studies suggest a relatively higher prevalence of disease in European countries relative to other areas of the world. Fuchs' dystrophy rarely affects individuals under 50 years of age.
Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Mutations in TGFBI which encodes "transforming growth factor beta induced" cause several forms of corneal dystrophies including granular corneal dystrophy, lattice corneal dystrophy, epithelial basement membrane dystrophy, Reis-Bucklers corneal dystrophy, and Thiel–Behnke dystrophy.
Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or rarely X-linked recessive Mendelian mode of inheritance:
Recurrence within a few years occurs in all patients following corneal transplantation. Soft contact lenses are effective in decreasing recurrences.
Some cases of it are linked to chromosome 10q24, others stem from a mutation in the TGFBI gene.
Subepithelial mucinous corneal dystrophy (SMCD) is a rare form of corneal dystrophy. It was first described in 1993 by Feder et al. Anterior to Bowman layer, deposits of glycosaminoglycan were detected and identified as chondroitin-4-sulfate and dermatan sulfate.
The disease has been associated with mutations in TGFBI gene on chromosome 5q which encodes for keratoepithelin. The inheritance is autosomal dominant.
Posterior amorphous corneal dystrophy (PACD) is a rare form of corneal dystrophy. It is not yet linked to any chromosomal locus. The first report describing this dystrophy dates back to 1977.
Phototherapeutic keratectomy (PTK) done by an ophthalmologist can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies including EBMD.
Schnyder crystalline corneal dystrophy (SCD) is a rare form of corneal dystrophy. It is caused by heterozygous mutations in UBIAD1 gene. Cells in the cornea accumulate cholesterol and phosopholipid deposits leading to the opacity, in severe cases requiring corneal transplants. Abnormal cholesterol metabolism has been noted in other cell types of affected patients (skin fibroblasts) suggesting that this may be a systemic disorder with clinical manifestations limited to the cornea.
A number of mutations causing this disease have been described in the M1S1 (TACSTD2) gene encoding "Tumor-associated calcium signal transducer 2", but not all patients have these mutations, suggesting involvement of other genes.
Granular corneal dystrophy is a slowly progressive corneal dystrophy that most often begins in early childhood.
Granular corneal dystrophy has two types:
- Granular corneal dystrophy type I , also corneal dystrophy Groenouw type I, is a rare form of human corneal dystrophy. It was first described by German ophthalmologist Arthur Groenouw in 1890.
- Granular corneal dystrophy type II, also called Avellino corneal dystrophy or combined granular-lattice corneal dystrophy is also a rare form of corneal dystrophy. The disorder was first described by Folberg et al. in 1988. The name Avellino corneal dystrophy comes from the first four patients in the original study each tracing their family origin to the Italian province of Avellino.
To clarify whether Thiel–Behnke corneal dystrophy is a separate entity from Reis-Bucklers corneal dystrophy, Kuchle et al. (1995) examined 28 corneal specimens with a clinically suspected diagnosis of corneal dystrophy of the Bowman layer by light and electron microscopy and reviewed the literature and concluded that 2 distinct autosomal dominant corneal dystrophy of Bowman layer (CBD) exist and proposed the designation CDB type I (geographic or 'true' Reis-Bucklers dystrophy) and CDB type II (honeycomb-shaped or Thiel–Behnke dystrophy). Visual loss is significantly greater in CDB I, and recurrences after corneal transplantation seem to be earlier and more extensive in CDB I.
Corneal transplant is not needed except in very severe and late cases.
Light sensitivity may be overcome by wearing tinted glassess.
Early stages may be asymptomatic and may not require any intervention. Initial treatment may include hypertonic eyedrops and ointment to reduce the corneal edema and may offer symptomatic improvement prior to surgical intervention.
Suboptimal vision caused by corneal dystrophy usually requires surgical intervention in the form of corneal transplantation. Penetrating keratoplasty, a common type of corneal transplantation, is commonly performed for extensive corneal dystrophy.
With penetrating keratoplasty (corneal transplant), the long-term results are good to excellent. Recent surgical improvements have been made which have increased the success rate for this procedure. However, recurrence of the disease in the donor graft may happen. Superficial corneal dystrophies do not need a penetrating keratoplasty as the deeper corneal tissue is unaffected, therefore a lamellar keratoplasty may be used instead.
Phototherapeutic keratectomy (PTK) can be used to excise or ablate the abnormal corneal tissue. Patients with superficial corneal opacities are suitable candidates for a this procedure.
Congenital stromal corneal dystrophy (CSCD), also called Witschel dystrophy, is an extremely rare, autosomal dominant form of corneal dystrophy. Only 4 families have been reported to have the disease by 2009. The main features of the disease are numerous opaque flaky or feathery areas of clouding in the stroma that multiply with age and eventually preclude visibility of the endothelium. Strabismus or primary open angle glaucoma was noted in some of the patients. Thickness of the cornea stays the same, Descemet's membrane and endothelium are relatively unaffected, but the fibrills of collagen that constitute stromal lamellae are reduced in diameter and lamellae themselves are packed significantly more tightly.
Epithelial basement membrane dystrophy (EBMD), also known as map-dot-fingerprint dystrophy and Cogans's microcystic dystrophy, is a disorder of the eye that can cause pain and dryness.
It is sometimes included in the group of corneal dystrophies. It diverges from the formal definition of corneal dystrophy in being in most cases non-familial. It also has a fluctuating course, while for a typical corneal dystrophy the course is progressive. When it is considered part of this group, it is the most common type of corneal dystrophy.
In case of corneal erosion, a doctor may prescribe eye drops and ointments to reduce the friction on the eroded cornea. In some cases, an eye patch may be used to immobilize the eyelids. With effective care, these erosions usually heal within three to seven days, although occasional sensations of pain may occur for the next six-to-eight weeks. As patients with LCD suffer with dry eyes as a result of erosion, a new technique involving the insertion of punctal plugs (both upper and lower) can reduce the amount of drops used a day, aiding ocular stability.
By about age 40, some people with lattice dystrophy will have scarring under the epithelium, resulting in a haze on the cornea that can greatly obscure vision. In this case, a corneal transplantation may be needed. There have been many cases in which teenage patients have had the procedure, which accounts for the change in severity of the condition from person to person.
Although people with lattice dystrophy have an excellent chance for a successful corneal transplantation, the disease may also arise in the donor cornea in as little as three years. In one study, about half of the transplant patients with lattice dystrophy had a recurrence of the disease between two and 26 years after the operation. Of these, 15 percent required a second corneal transplant. Early lattice and recurrent lattice arising in the donor cornea responds well to treatment with the excimer laser.
Phototherapeutic keratectomy (PTK) using [Excimer laser] can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies.
In the recessive form corneal clouding is observed at birth or within the neonatal period, nystagmus is often present, but no photophobia or epiphora is seen. In the autosomal dominant type corneal opacification is usually seen in the first or second year of life and progresses slowly, and nystagmus is infrequently seen.
CSCD is associated with a mutation in the gene DCN that encodes the protein decorin, located at chromosome 12q22. The disorder is inherited in an autosomal dominant manner, which indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 12 is an autosome), and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Posterior Polymorphous Corneal Dystrophy (PPCD; sometimes also "Schlichting dystrophy") is a type of corneal dystrophy, characterised by changes in Descemet's membrane and endothelial layer. Symptoms mainly consist of decreased vision due to corneal edema. In some cases they are present from birth, other patients are asymptomatic. Histopathological analysis shows that the cells of endothelium have some characteristics of epithelial cells and have become multilayered. The disease was first described in 1916 by Koeppe as "keratitis bullosa interna".
PPCD type 2 is linked to the mutations in COL8A2, and PPCD type 3 mutations in ZEB1 gene, but the underlying genetic disturbance in PPCD type 1 is unknown.
Congenital hereditary corneal dystrophy (CHED) is a form of corneal dystrophy which presents at birth.
Fleck corneal dystrophy, also known as "Francois-Neetens speckled corneal dystrophy", is a rare form of corneal dystrophy. It is caused by mutations in PIKFYVE gene. Small opacities, some of which resemble "flecks", are scattered in the stroma of the patients. Other opacities look more like snowflakes or clouds. The disease is non-progressive and in most cases asymptomatic, with mild photophobia reported by some patients. In a single case report, a corneal transplantation was performed for concurrent keratoconus, and at 10 years follow-up there was still no evidence of the inclusions in the stroma.
DM1 is the most common form of myotonic muscular dystrophy diagnosed in children, with a prevalence ranging from 1 per 100,000 in Japan to 3-15 per 100,000 in Europe. The prevalence may be as high as 1 in 500 in regions such as Quebec, possibly due to the founder effect. In most populations, DM1 appears to be more common than DM2. However, recent studies suggest that type 2 may be as common as type 1 among people in Germany and Finland.
The incidence of congenital myotonic dystrophy is thought to be about 1:20,000. DM occurs in about 1 per 7,000–8,000 people and has been described in people from all over the world. It affects males and females approximately equally. About 30,000 people in the United States are affected.
Macular corneal dystrophy, also known as Fehr corneal dystrophy named for German ophthalmologist Oskar Fehr (1871-1959), is a rare pathological condition affecting the stroma of cornea. The first signs are usually noticed in the first decade of life, and progress afterwards, with opacities developing in the cornea and attacks of pain. The condition was first described by Arthur Groenouw in 1890.