Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although there is a lack of robust studies demonstrating the efficacy of lifestyle changes in preventing TIA, many medical professionals recommend them. These include:
- Avoiding smoking
- Cutting down on fats to help reduce the amount of plaque build up
- Eating a healthy diet including plenty of fruits and vegetables
- Limiting sodium in the diet, thereby reducing blood pressure
- Exercising regularly
- Moderating intake of alcohol, stimulants, sympathomimetics, etc.
- Maintaining a healthy weight
In addition, it is important to control any underlying medical conditions that may increase the risk of stroke or TIA, including:
- Hypertension
- High cholesterol
- Diabetes mellitus
- Atrial fibrillation
By definition, TIAs are transient, self-resolving, and do not cause permanent impairment. However, they are associated with an increased risk of subsequent ischemic strokes, which can be permanently disabling. Therefore, management centers around the prevention of future ischemic strokes and addressing any modifiable risk factors. The optimal regimen depends on the underlying cause of the TIA.
Acquired cerebrovascular diseases are those that are obtained throughout a person's life that may be preventable by controlling risk factors. The incidence of cerebrovascular disease increases as an individual ages. Causes of acquired cerebrovascular disease include atherosclerosis, embolism, aneurysms, and arterial dissections. Atherosclerosis leads to narrowing of blood vessels and less perfusion to the brain, and it also increases the risk of thrombosis, or a blockage of an artery, within the brain. Major modifiable risk factors for atherosclerosis include:
Controlling these risk factors can reduce the incidence of atherosclerosis and stroke. Atrial fibrillation is also a major risk factor for strokes. Atrial fibrillation causes blood clots to form within the heart, which may travel to the arteries within the brain and cause an embolism. The embolism prevents blood flow to the brain, which leads to a stroke.
An aneurysm is an abnormal bulging of small sections of arteries, which increases the risk of artery rupture. Intracranial aneurysms are a leading cause of subarachnoid hemorrhage, or bleeding around the brain within the subarachnoid space. There are various hereditary disorders associated with intracranial aneurysms, such as Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, and familial hyperaldosteronism type I. However, individuals without these disorders may also obtain aneurysms. The American Heart Association and American Stroke Association recommend controlling modifiable risk factors including smoking and hypertension.
Arterial dissections are tears of the internal lining of arteries, often associated with trauma. Dissections within the carotid arteries or vertebral arteries may compromise blood flow to the brain due to thrombosis, and dissections increase the risk of vessel rupture.
Major risk factors for cerebral infarction are generally the same as for atherosclerosis: high blood pressure, Diabetes mellitus, tobacco smoking, obesity, and dyslipidemia. The American Heart Association/American Stroke Association (AHA/ASA) recommends controlling these risk factors in order to prevent stroke. The AHA/ASA guidelines also provide information on how to prevent stroke if someone has more specific concerns, such as Sickle-cell disease or pregnancy. It is also possible to calculate the risk of stroke in the next decade based on information gathered through the Framingham Heart Study.
Prognostics factors:
Lower Glasgow coma scale score, higher pulse rate, higher respiratory rate and lower arterial oxygen saturation level is prognostic features of in-hospital mortality rate in acute ischemic stroke.
There are various individual risk factors associated with having a silent stroke. Many of these risk factors are the same as those associated with having a major symptomatic stroke.
- Acrolein: elevated levels of acrolein, a toxic metabolite produced from the polyamines spermine, spermidine and by amine oxidase serve as a marker for silent stroke, when elevated in conjunction with C-reactive protein and interleukin 6 the confidence levels in predicting a silent stroke risk increase.
- Adiponectin: is a type of protein secreted by adipose cells that improves insulin sensitivity and possesses antiatherogenic properties. Lower levels of s-adiponectin are associated with ischemic stroke.
- Aging: the prevalence of silent stroke rises with increasing age with a prevalence rate of over twenty percent of the elderly increasing to 30%-40% in those over the age of 70.
- Anemia: children with acute anemia caused by medical conditions other than sickle cell anemia with hemoglobin below 5.5 g/dL. are at increased risk for having a silent stroke according to a study released at American Stroke Association's International Stroke Conference 2011. The researchers suggested a thorough examination for evidence of silent stroke in all severely anemic children in order to facilitate timely intervention to ameliorate the potential brain damage.
- Sickle cell anemia: is an autosomal recessive genetic blood disorder caused in the gene (HBB gene) which codes for hemoglobin (Hg) and results in lowered levels. The blood cells in sickle cell disease are abnormally shaped (sickle-shaped) and may form clots or block blood vessels. Estimates of children with sickle cell anemia who suffer strokes (with silent strokes predominating in the younger patients) range from 15%-30%. These children are at significant risk of cognitive impairment and poor educational outcomes.
- Thalassemia major: is an autosomal recessive genetically inherited form of hemolytic anemia, characterized by red blood cell (hemoglobin) production abnormalities. Children with this disorder are at increased risk for silent stroke.
- Atrial fibrillation (AF): atrial fibrillation (irregular heartbeat) is associated with a doubled risk for silent stroke.
- Cigarette smoking: The procoagulant and atherogenic effects of smoking increase the risk for silent stroke. Smoking also has a deleterious effect on regional cerebral blood flow (rCBF). The chances of having a stroke increase with the amount of cigarettes smoked and the length of time an individual has smoked (pack years).
- C-reactive protein (CRP) and Interleukin 6 (IL6): C-reactive protein is one of the plasma proteins known as acute phase proteins (proteins whose plasma concentrations increase (or decrease) by 25% or more during inflammatory disorders) which is produced by the liver. The level of CRP rises in response to inflammation in various parts of the body including vascular inflammation. The level of CRP can rise as high as 1000-fold in response to inflammation. Other conditions that can cause marked changes in CRP levels include infection, trauma, surgery, burns, inflammatory conditions, and advanced cancer. Moderate changes can also occur after strenuous exercise, heatstroke, and childbirth. Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test have a close correlation to increased risk of silent stroke. Interleukin-6 is an interleukin (type of protein) produced by T-cells (specialized white blood cells), macrophages and endothelial cells. IL6 is also classified as a cytokine (acts in relaying information between cells). IL6 is involved in the regulation of the acute phase response to injury and infection may act as both an anti-inflammatory agent and a pro-inflammatory.Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test and elevated levels of I6 as measured by an IL6 ELISA are markers for the increased risk of silent stroke.
- Diabetes mellitus: untreated or improperly managed diabetes mellitus is associated with an increased risk for silent stroke.
- Hypertension: which affects up to 50 million people in the United States alone is the major treatable risk factor associated with silent stokes.
- Homocysteine: elevated levels of total homocysteine (tHcy) an amino acid are an independent risk factor for silent stroke, even in healthy middle-aged adults.
- Metabolic syndrome (MetS):Metabolic syndrome is a name for a group of risk factors that occur together and increase the risk for coronary artery disease, stroke, and type 2 diabetes. A higher number of these MetS risk factors the greater the chance of having a silent sroke.
- Polycystic ovary syndrome (PCOS): is associated with double the risk for arterial disease including silent stroke independent of the subjects Body mass index (BMI).
- Sleep apnea: is a term which encompasses a heterogeneous group of sleep-related breathing disorders in which there is repeated intermittent episodes of breathing cessation or hypopnea, when breathing is shallower or slower than normal. Sleep apnea is a common finding in stroke patients but recent research suggests that it is even more prevalent in silent stroke and chronic microvascular changes in the brain. In the study presented at the American Stroke Association's International Stroke Conference 2012 the higher the apnea-hypopnea index, the more likely patients had a silent stroke.
Diabetes mellitus increases the risk of stroke by 2 to 3 times. While intensive blood sugar control has been shown to reduce small blood vessel complications such as kidney damage and damage to the retina of the eye it has not been shown to reduce large blood vessel complications such as stroke.
Hemodynamic impairment is thought to be the cause of deep watershed infarcts, characterized by a rosary-like pattern. However new studies have shown that microembolism might also contribute to the development of deep watershed infarcts. The dual contribution of hemodynamic impairment and microembolism would result in different treatment for patients with these specific infarcts.
Nutrition, specifically the Mediterranean-style diet, has the potential for decreasing the risk of having a stroke by more than half. It does not appear that lowering levels of homocysteine with folic acid affects the risk of stroke.
Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality.
A sharp drop in blood pressure is the most frequent cause of watershed infarcts. The most frequent location for a watershed stroke is the region between the anterior cerebral artery and middle cerebral artery. These events caused by hypotension do not usually cause the blood vessel to rupture.
Whether a cerebral infarction is thrombotic or embolic based, its pathophysiology, or the observed conditions and underlying mechanisms of the disease. In thrombotic ischemic stroke, a thrombus forms and blocks blood flow. A thrombus forms when the endothelium is activated by a variety of signals to result in platelet aggregation in the artery. This clump of platelets interacts with fibrin to form a platelet plug. This platelet plug grows into a thrombus, resulting in a stenotic artery. Thrombotic ischemia can occur in large or small blood vessels. In large vessels, the most common causes of thrombi are atherosclerosis and vasoconstriction. In small vessels, the most common cause is lipohyalinosis. Lipohyalinosis is when high blood pressure and aging causes a build-up of fatty hyaline matter in blood vessels. Atheroma formation can also cause small vessel thrombotic ischemic stroke.
An embolic stroke refers to the blockage of an artery by an embolus, a traveling particle or debris in the arterial bloodstream originating elsewhere. An embolus is most frequently a thrombus, but it can also be a number of other substances including fat (e.g. from bone marrow in a broken bone), air, cancer cells or clumps of bacteria (usually from infectious endocarditis). The embolus may be of cardiac origin due to Atrial fibrillation, Patent foramen ovale or from atherosclerotic plaque of another (or the same) large artery. Cerebral artery gas embolism (e.g. during ascent from a SCUBA dive) is also a possible cause of infarction (Levvett & Millar, 2008)
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison their healthy counterparts.
Sickle cell anemia may cause brain ischemia associated with the irregularly shaped blood cells. Sickle shaped blood cells clot more easily than normal blood cells, impeding blood flow to the brain.
Compression of blood vessels may also lead to brain ischemia, by blocking the arteries that carry oxygen to the brain. Tumors are one cause of blood vessel compression.
Ventricular tachycardia represents a series of irregular heartbeats that may cause the heart to completely shut down resulting in cessation of oxygen flow. Further, irregular heartbeats may result in formation of blood clots, thus leading to oxygen deprivation to all organs.
Blockage of arteries due to plaque buildup may also result in ischemia. Even a small amount of plaque build up can result in the narrowing of passageways, causing that area to become more prone to blood clots. Large blood clots can also cause ischemia by blocking blood flow.
A heart attack can also cause brain ischemia due to the correlation that exists between heart attack and low blood pressure. Extremely low blood pressure usually represents the inadequate oxygenation of tissues. Untreated heart attacks may slow blood flow enough that blood may start to clot and prevent the flow of blood to the brain or other major organs. Extremely low blood pressure can also result from drug overdose and reactions to drugs. Therefore, brain ischemia can result from events other than heart attacks.
Congenital heart defects may also cause brain ischemia due to the lack of appropriate artery formation and connection. People with congenital heart defects may also be prone to blood clots.
Other events that may result in brain ischemia include cardiorespiratory arrest, stroke, and severe irreversible brain damage.
Recently, Moyamoya disease has also been identified as a potential cause for brain ischemia. Moyamoya disease is an extremely rare cerebrovascular condition that limits blood circulation to the brain, consequently leading to oxygen deprivation.
Nontraumatic intraparenchymal hemorrhage most commonly results from hypertensive damage to blood vessel walls e.g.:
- hypertension
- eclampsia
- drug abuse,
but it also may be due to autoregulatory dysfunction with excessive cerebral blood flow e.g.:
- reperfusion injury
- hemorrhagic transformation
- cold exposure
- rupture of an aneurysm or arteriovenous malformation (AVM)
- arteriopathy (e.g. cerebral amyloid angiopathy, moyamoya)
- altered hemostasis (e.g. thrombolysis, anticoagulation, bleeding diathesis)
- hemorrhagic necrosis (e.g. tumor, infection)
- venous outflow obstruction (e.g. cerebral venous sinus thrombosis).
Nonpenetrating and penetrating cranial trauma can also be common causes of intracerebral hemorrhage.
Diseases associated with cerebral atherosclerosis include:
- Hypertensive arteriopathy
This pathological process involves the thickening and damage of arteriole walls. It mainly affects the ends of the arterioles which are located in the deep gray nuclei and deep white matter of the brain. It is thought that this is what causes cerebral microbleeds in deep brain regions. This small vessel damage can also reduce the clearance of amyloid-β, thereby increasing the likelihood of CAA.
Diseases cerebral atherosclerosis and associated diseases can cause are:
- Alzheimer's disease
Alzheimer's disease is a form of dementia that entails brain atrophy. Cerebral amyloid angiopathy is found in 90% of the cases at autopsy, with 25% being severe CAA.
- Cerebral microbleeds (CMB)
Cerebral microbleeds have been observed during recent studies on dementia sufferers using MRI.
- Stroke
Strokes occur from the sudden loss of blood flow to an area of the brain. The loss of flow is generally either from a blockage or hemorrhage. Studies of postmortem stroke cases have shown that intracranial athreosclerotic plaque build up occurred in over half of the individuals and over one third of the overall cases had stenotic build up.
Therapeutic hypothermia has been attempted to improve results post brain ischemia . This procedure was suggested to be beneficial based on its effects post cardiac arrest. Evidence supporting the use of therapeutic hypothermia after brain ischemia, however, is limited.
A closely related disease to brain ischemia is brain hypoxia. Brain hypoxia is the condition in which there is a decrease in the oxygen supply to the brain even in the presence of adequate blood flow. If hypoxia lasts for long periods of time, coma, seizures, and even brain death may occur. Symptoms of brain hypoxia are similar to ischemia and include inattentiveness, poor judgment, memory loss, and a decrease in motor coordination. Potential causes of brain hypoxia are suffocation, carbon monoxide poisoning, severe anemia, and use of drugs such as cocaine and other amphetamines. Other causes associated with brain hypoxia include drowning, strangling, choking, cardiac arrest, head trauma, and complications during general anesthesia. Treatment strategies for brain hypoxia vary depending on the original cause of injury, primary and/or secondary.
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
Asymptomatic individuals with intracranial stenosis are typically told to take over the counter platelet inhibitors like aspirin whereas those with symptomatic presentation are prescribed anti-coagulation medications. For asymptomatic persons the idea is to stop the buildup of plaque from continuing. They are not experiencing symptoms; however if more build up occurs it is likely they will. For symptomatic individuals it is necessary to try and reduce the amount of stenosis. The anti-coagulation medications reduce the likelihood of further buildup while also trying to break down the current build up on the surface without an embolism forming. For those with severe stenosis that are at risk for impending stroke endovascular treatment is used. Depending on the individual and the location of the stenosis there are multiple treatments that can be undertaken. These include angioplasty, stent insertion, or bypass the blocked area.
Intracerebral bleeds are the second most common cause of stroke, accounting for 10% of hospital admissions for stroke. High blood pressure raises the risks of spontaneous intracerebral hemorrhage by two to six times. More common in adults than in children, intraparenchymal bleeds are usually due to penetrating head trauma, but can also be due to depressed skull fractures. Acceleration-deceleration trauma, rupture of an aneurysm or arteriovenous malformation (AVM), and bleeding within a tumor are additional causes. Amyloid angiopathy is a not uncommon cause of intracerebral hemorrhage in patients over the age of 55. A very small proportion is due to cerebral venous sinus thrombosis.
Risk factors for ICH include:
- Hypertension (high blood pressure)
- Diabetes mellitus
- Menopause
- Cigarette smoking
- Excessive alcohol consumption
- Severe migraine
Traumautic intracerebral hematomas are divided into acute and delayed. Acute intracerebral hematomas occur at the time of the injury while delayed intracerebral hematomas have been reported from as early as 6 hours post injury to as long as several weeks.
The fact that the ischemic cascade involves a number of steps has led doctors to suspect that neuroprotectants such as calcium channel blockers or glutamate antagonists could be produced to interrupt the cascade at a single one of the steps, blocking the downstream effects. Though initial trials for such neuroprotective drugs led many to be hopeful, until recently, human clinical trials with neuroprotectants such as NMDA receptor antagonists were unsuccessful.
On October 7, 2003, a U.S. patent number 6630507 entitled "Cannabinoids as Antioxidants and Neuroprotectants" was awarded to the United States Department of Health and Human Services, based on research carried out at the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). This patent claims that cannabinoids are "useful in the treatment and prophylaxis of wide variety of oxidation associated diseases such as ischemia, inflammatory ... and autoimmune diseases. The cannabinoids are found to have particular application as neuroprotectants, for example in limiting neurological damage following ischemic insults, such as stroke and trauma..."
On November 17, 2011, in accordance with 35 U.S.C. 209(c)(1) and 37 CFR part 404.7(a)(1)(i), the National Institutes of Health, Department of Health and Human Services, published in the Federal Register, that it is contemplating the grant of an exclusive patent license to practice the invention embodied in U.S. Patent 6,630,507, entitled “Cannabinoids as antioxidants and neuroprotectants” and PCT Application Serial No. PCT/US99/08769 and foreign equivalents thereof, entitled “Cannabinoids as antioxidants and neuroprotectants” [HHS Ref. No. E-287-1997/2] to KannaLife Sciences Inc., which has offices in New York, U.S. This patent and its foreign counterparts have been assigned to the Government of the United States of America. The prospective exclusive license territory may be worldwide, and the field of use may be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as antioxidants and neuroprotectants for use and delivery in humans, for the treatment of hepatic encephalopathy, as claimed in the Licensed Patent Rights.
Once considered uncommon, spontaneous carotid artery dissection is an increasingly recognised cause of stroke that preferentially affects the middle-aged.
The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have been reported to be 2.6 to 2.9 per 100,000.
Observational studies and case reports published since the early 1980s show that patients with spontaneous internal carotid artery dissection may also have a history of stroke in their family and/or hereditary connective tissue disorders, such as Marfan syndrome, Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, pseudoxanthoma elasticum, fibromuscular dysplasia, and osteogenesis imperfecta type I. IgG4-related disease involving the carotid artery has also been observed as a cause.
However, although an association with connective tissue disorders does exist, most people with spontaneous arterial dissections do not have associated connective tissue disorders. Also, the reports on the prevalence of hereditary connective tissue diseases in people with spontaneous dissections are highly variable, ranging from 0% to 0.6% in one study to 5% to 18% in another study.
Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the elongated styloid process causes symptoms).
In younger patients, vascular malformations, specifically AVMs and cavernous angiomas are more common causes for hemorrhage. In addition, venous malformations are associated with hemorrhage.
In the elderly population, amyloid angiopathy is associated with cerebral infarcts as well as hemorrhage in superficial locations, rather than deep white matter or basal ganglia. These are usually described as "lobar". These bleedings are not associated with systemic amyloidosis.
Hemorrhagic neoplasms are more complex, heterogeneous bleeds often with associated edema. These hemorrhages are related to tumor necrosis, vascular invasion and neovascularity. Glioblastomas are the most common primary malignancies to hemorrhage while thyroid, renal cell carcinoma, melanoma, and lung cancer are the most common causes of hemorrhage from metastatic disease.
Other causes of intraparenchymal hemorrhage include hemorrhagic transformation of infarction which is usually in a classic vascular distribution and is seen in approximately 24 to 48 hours following the ischemic event. This hemorrhage rarely extends into the ventricular system.
Some evidence suggests that magnesium sulfate administered to mothers prior to early preterm birth reduces the risk of cerebral palsy in surviving neonates. Due to the risk of adverse effects treatments may have, it is unlikely that treatments to prevent neonatal strokes or other hypoxic events would be given routinely to pregnant women without evidence that their fetus was at extreme risk or has already suffered an injury or stroke. This approach might be more acceptable if the pharmacologic agents were endogenously occurring substances (those that occur naturally in an organism), such as creatine or melatonin, with no adverse side-effects.
Because of the period of high neuronal plasticity in the months after birth, it may be possible to improve the neuronal environment immediately after birth in neonates considered to be at risk of neonatal stroke. This may be done by enhancing the growth of axons and dendrites, synaptogenesis and myelination of axons with systemic injections of neurotrophins or growth factors which can cross the blood–brain barrier.
It is also possible to classify angiopathy by the associated condition:
- Diabetic angiopathy
- Congophilic angiopathy