Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several studies found that healthcare-associated pneumonia is the second most common type of pneumonia, occurring less commonly than community-acquired pneumonia but more frequently than hospital-acquired pneumonia and ventilator-associated pneumonia. In a recent observational study, the rates for CAP, HCAP and HAP were 60%, 25% and 15% respectively. Patients with HCAP are older and more commonly have simultaneous health problems (such as previous stroke, heart failure and diabetes).
The number of residents in long term care facilities is expected to rise dramatically over the next 30 years. These older adults are known to develop pneumonia 10 times more than their community-dwelling peers, and hospital admittance rates are 30 times higher.
Since the start of the AIDS epidemic, PCP has been closely associated with AIDS. Because it only occurs in an immunocompromised host, it may be the first clue to a new AIDS diagnosis if the patient has no other reason to be immunocompromised (e.g. taking immunosuppressive drugs for organ transplant). An unusual rise in the number of PCP cases in North America, noticed when physicians began requesting large quantities of the rarely used antibiotic pentamidine, was the first clue to the existence of AIDS in the early 1980s.
Prior to the development of more effective treatments, PCP was a common and rapid cause of death in persons living with AIDS. Much of the incidence of PCP has been reduced by instituting a standard practice of using oral co-trimoxazole (Bactrim / Septra) to prevent the disease in people with CD4 counts less than 200/μL. In populations that do not have access to preventive treatment, PCP continues to be a major cause of death in AIDS.
CAP is common worldwide, and a major cause of death in all age groups. In children, most deaths (over two million a year) occur in newborn period. According to a World Health Organization estimate, one in three newborn deaths are from pneumonia. Mortality decreases with age until late adulthood, with the elderly at risk for CAP and its associated mortality.
More CAP cases occur during the winter than at other times of the year. CAP is more common in males than females, and more common in black people than Caucasians. Patients with underlying illnesses (such as Alzheimer's disease, cystic fibrosis, COPD, tobacco smoking, alcoholism or immune-system problems) have an increased risk of developing pneumonia.
The disease PCP is relatively rare in people with normal immune systems, but common among people with weakened immune systems, such as premature or severely malnourished children, the elderly, and especially persons living with HIV/AIDS (in whom it is most commonly observed). PCP can also develop in patients who are taking immunosuppressive medications. It can occur in patients who have undergone solid organ transplantation or bone marrow transplantation and after surgery. Infections with "Pneumocystis" pneumonia are also common in infants with hyper IgM syndrome, an X-linked or autosomal recessive trait.
The causative organism of PCP is distributed worldwide and "Pneumocystis" pneumonia has been described in all continents except Antarctica. Greater than 75% of children are seropositive by the age of 4, which suggests a high background exposure to the organism. A post-mortem study conducted in Chile of 96 persons who died of unrelated causes (suicide, traffic accidents, and so forth) found that 65 (68%) of them had pneumocystis in their lungs, which suggests that asymptomatic pneumocystis infection is extremely common.
"Pneumocystis jirovecii" was originally described as a rare cause of pneumonia in neonates. It is commonly believed to be a commensal organism (dependent upon its human host for survival). The possibility of person-to-person transmission has recently gained credence, with supporting evidence coming from many different genotyping studies of "Pneumocystis jirovecii" isolates from human lung tissue. For example, in one outbreak of 12 cases among transplant patients in Leiden, it was suggested as likely, but not proven, that human-to-human spread may have occurred.
A full spectrum of microorganisms is responsible for CAP in adults, and patients with certain risk factors are more susceptible to infections of certain groups of microorganisms. Identifying people at risk for infection by these organisms aids in appropriate treatment.
Many less-common organisms can cause CAP in adults, and are identified from specific risk factors or treatment failure for common causes.
Nursing home-acquired pneumonia is an important subgroup of HCAP. Residents of long term care facilities may become infected through their contacts with the healthcare system; as such, the microbes responsible for their pneumonias may be different from those traditionally seen in community-dwelling patients, requiring therapy with different antibiotics. Other groups include patients who are admitted as a day case for regular hemodialysis or intravenous infusion (for example, chemotherapy). Especially in the very old and in demented patients, HCAP is likely to present with atypical symptoms.
When comparing the bacterial-caused atypical pneumonias with these caused by real viruses (excluding bacteria that were wrongly considered as viruses), the term "atypical pneumonia" almost always implies a bacterial cause and is contrasted with viral pneumonia.
Known viral causes of atypical pneumonia include respiratory syncytial virus (RSV), influenza A and B, parainfluenza, adenovirus, severe acute respiratory syndrome (SARS)
and measles.
Community-acquired pneumonia (CAP) is acquired in the community, outside of health care facilities. Compared with health care–associated pneumonia, it is less likely to involve multidrug-resistant bacteria. Although the latter are no longer rare in CAP, they are still less likely.
Pneumonia occurs in a variety of situations and treatment must vary according to the situation. It is classified as either community or hospital acquired depending on where the patient contracted the infection. It is life-threatening in the elderly or those who are immunocompromised. The most common treatment is antibiotics and these vary in their adverse effects and their effectiveness. Pneumonia is also the leading cause of death in children less than five years of age in low income countries. The most common cause of pneumonia is pneumococcal bacteria, "Streptococcus pneumoniae" accounts for 2/3 of bacteremic pneumonias. This is a dangerous type of lung infection with a mortality rate of around 25%.
For optimal management of a pneumonia patient, the following must be assessed: pneumonia severity (including treatment location, e.g., home, hospital or intensive care), identification of causative organism, analgesia of chest pain, the need for supplemental oxygen, physiotherapy, hydration, bronchodilators and possible complications of emphysema or lung abscess.
The most common causative organisms are (often intracellular living) bacteria:
- "Chlamydophila pneumoniae": Mild form of pneumonia with relatively mild symptoms.
- "Chlamydophila psittaci": Causes psittacosis.
- "Coxiella burnetii": Causes Q fever.
- "Francisella tularensis": Causes tularemia.
- "Legionella pneumophila": Causes a severe form of pneumonia with a relatively high mortality rate, known as legionellosis or Legionnaires' disease.
- "Mycoplasma pneumoniae": Usually occurs in younger age groups and may be associated with neurological and systemic (e.g. rashes) symptoms.
Atypical pneumonia can also have a fungal, protozoan or viral cause.In the past, most organisms were difficult to culture. However, newer techniques aid in the definitive identification of the pathogen, which may lead to more individualized treatment plans.
Lower respiratory infectious disease is the fifth-leading cause of death and the combined leading infectious cause of death, being responsible for 2·74 million deaths worldwide. This is generally similar to estimates in the 2010 Global Burden of Disease study.
This total only accounts for "Streptococcus pneumoniae" and "Haemophilus Influenzae" infections and does not account for atypical or nosocomial causes of lower respiratory disease, therefore underestimating total disease burden.
Prevention includes vaccination, environmental measures and appropriate treatment of other health problems. It is believed that, if appropriate preventive measures were instituted globally, mortality among children could be reduced by 400,000; and, if proper treatment were universally available, childhood deaths could be decreased by another 600,000.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.
The incidence of pleural empyema and the prevalence of specific causative microorganisms varies depending on the source of infection (community acquired vs. hospital acquired pneumonia), the age of the patient and host immune status. Risk factors include alcoholism, drug use, HIV infection, neoplasm and pre-existent pulmonary disease. Pleural empyema was found in 0.7% of 3675 patients needing hospitalization for a community acquired pneumonia in a recent Canadian single-center prospective study. A multi-center study from the UK including 430 adult patients with community acquired pleural empyema found negative pleural-fluid cultures in 54% of patients, Streptococcus milleri group in 16%, Staphylococcus aureus in 12%, Streptococcus pneumoniae in 8%, other Streptococci in 7% and anaerobic bacteria in 8%. Given the difficulties in culturing anaerobic bacteria the frequency of the latter (including mixed infections) might be underestimated.
The risk of empyema in children seems to be comparable to adults. Using the United States Kids’ Inpatient Database the incidence is calculated to be around 1.5% in children hospitalized for community acquired pneumonia, although percentages up to 30% have been reported in individual hospitals, a difference which may be explained by an transient endemic of highly invasive serotype or overdiagnosis of small parapneumonic effusions. The distribution of causative organisms does differ greatly from that in adults: in an analysis of 78 children with community acquired pleural empyema, no micro-organism was found in 27% of patients, Streptococcus pneumoniae in 51%, Streptococcus pyogenes in 9% and Staphylococcus aureus in 8%.
Although pneumococcal vaccination dramatically decreased the incidence of pneumonia in children, it did not have this effect on the incidence of complicated pneumonia. It has been shown that the incidence of empyema in children was already on the rise at the end of the 20th century, and that the widespread use of pneumococcal vaccination did not slow down this trend. This might in part be explained by a change in prevalence of (more invasive) pneumococcal serotypes, some of which are not covered by the vaccine, as well a rise in incidence of pneumonia caused by other streptococci and staphylococci. The incidence of empyema seems to be rising in the adult population as well, albeit at a slower rate.
Congential rubella is still a risk with higher risk among immigrant women from countries without adequate vaccination programs.
"Klebsiella" resistant strains have been recorded in USA with a roughly threefold increase in Chicago cases, quarantined individuals in Israel, United Kingdom and parts of Europe, possible ground zero, or location of emergence, is the India-Pakistan border.
A strain known as Carbapenem-Resistant Klebsiella pneumonia (CRKP) was estimated to be involved in 350 cases in Los Angeles county between June and December 2010.
"Streptococcus pneumoniae" () is the most common bacterial cause of pneumonia in all age groups except newborn infants. "Streptococcus pneumoniae" is a Gram-positive bacterium that often lives in the throat of people who do not have pneumonia.
Other important Gram-positive causes of pneumonia are "Staphylococcus aureus" () and "Bacillus anthracis".
Gram-negative bacteria are seen less frequently: "Haemophilus influenzae" (), "Klebsiella pneumoniae" (), "Escherichia coli" (), "Pseudomonas aeruginosa" (), "Bordetella pertussis", and "Moraxella catarrhalis" are the most common.
These bacteria often live in the gut and enter the lungs when contents of the gut (such as vomit or faeces) are inhaled.
In terms of the pathophysiology of Klebsiella pneumonia we see neutrophil myeloperoxidase defense against "K P".Oxidative inactivation of elastase is involved, while LBP helps transfer bacteria cell wall elements to the cells.
"Mycoplasma pneumoniae" is spread through respiratory droplet transmission. Once attached to the mucosa of a host organism, "M. pneumoniae" extracts nutrients, grows, and reproduces by binary fission. Attachment sites include the upper and lower respiratory tract, causing pharyngitis, bronchitis, and pneumonia. The infection caused by this bacterium is called atypical pneumonia because of its protracted course and lack of sputum production and wealth of extrapulmonary symptoms. Chronic "Mycoplasma" infections have been implicated in the pathogenesis of rheumatoid arthritis and other rheumatological diseases.
"Mycoplasma" atypical pneumonia can be complicated by Stevens–Johnson syndrome, autoimmune hemolytic anemia, cardiovascular diseases, encephalitis, or Guillain–Barré syndrome.
While antibiotics with activity specifically against "M. pneumoniae" are often used (e.g., erythromycin, doxycycline), it is unclear if these result in greater benefit than using antibiotics without specific activity against this organism in those with an infection acquired in the community.
Worldwide, approximately 1 in 100 to 500 babies are born with congenital CMV. Approximately 1 in 3000 will show symptoms and 1 in 7000 will die.
Congenital HCMV infection occurs when the mother suffers a primary infection (or reactivation) during pregnancy. Due to the lower seroprevalence of HCMV in industrialized countries and higher socioeconomic groups, congenital infections are actually less common in poorer communities, where more women of child-bearing age are already seropositive. In industrialized countries up to 8% of HCMV seronegative mothers contract primary HCMV infection during pregnancy, of which roughly 50% will transmit to the fetus. Between 22–38% of infected fetuses are then born with symptoms, which may include pneumonia, gastrointestinal, retinal and neurological disease. HCMV infection occurs in roughly 1% of all neonates with those who are not congenitally infected contracting the infection possibly through breast milk. Other sources of neonatal infection are bodily fluids which are known to contain high titres in shedding individuals: saliva (<10copies/ml) and urine (<10copies/ml ) seem common routes of transmission.
The incidence of primary CMV infection in pregnant women in the United States varies from 1% to 3%. Healthy pregnant women are not at special risk for disease from CMV infection. When infected with CMV, most women have no symptoms and very few have a disease resembling infectious mononucleosis. It is their developing fetuses that may be at risk for congenital CMV disease. CMV remains the most important cause of congenital viral infection in the United States. HCMV is the most common cause of congenital infection in humans and intrauterine primary infections are more common than other well-known infections and syndromes, including Down Syndrome, Fetal Alcohol Syndrome, Spina Bifida, and Pediatric HIV/AIDS.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
Pneumonia is an illness which can result from a variety of causes, including infection with bacteria, viruses, fungi, or parasites. Pneumonia can occur in any animal with lungs, including mammals, birds, and reptiles.
Symptoms associated with pneumonia include fever, fast or difficult breathing, nasal discharge, and decreased activity.
Different animal species have distinct lung anatomy and physiology and are thus
affected by pneumonia differently. Differences in anatomy, immune systems, diet, and behavior also affects the particular microorganisms commonly causing
pneumonia. Diagnostic tools include physical examination, testing of the
sputum, and x-ray investigation. Treatment depends on the cause of pneumonia;
bacterial pneumonia is treated with antibiotics.
"See also:" Pneumonia, Pneumonic.
When bacteria are implicated, they are usually aerobic:
- "Streptococcus pneumoniae"
- "Staphylococcus aureus"
- "Haemophilus influenzae"
- "Pseudomonas aeruginosa"
They may also be admixed with anaerobic bacteria oral flora:
- "Bacteroides"
- "Prevotella"
- "Fusobacterium"
- "Peptostreptococcus"