Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
40 cases were diagnosed in northern Italy between 1940 and 1990. The gene frequency for this autosomal recessive condition was estimated at 1 in 218. In 1989, 16 cases on EOCA were diagnosed in children with a mean onset age of 7.1 In 1990, 20 patients affected by EOCA were studied. It was found that the ataxia of this study's participants affected the pyramidal tracts and peripheral nerves.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Harding ataxia, also known as Early onset cerebellar ataxia with retained reflexes (EOCARR), is an autosomal recessive cerebellar ataxia originally described by Harding in 1981. This form of cerebellar ataxia is similar to Friedreich ataxia including that it results in poor reflexes and balance, but differs in several ways, including the absence of diabetes mellitus, optic atrophy, cardiomyopathy, skeletal abnormalities, and the fact that tendon reflexes in the arms and knees remain intact. This form of ataxia is characterized by onset in the first 20 years, and is less severe than Friedreich ataxia. Additional cases were diagnosed in 1989, 1990, 1991, and 1998.
A July, 2012, study suggested that mesenchymal stem cell therapy could delay the progression of neurological deficits in patients with MSA-cerebellar type, suggesting the potential of mesenchymal stem cell therapy as a treatment candidate of MSA.
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
The rate of MSA is estimated at 4.6 cases per 100,000 people. This disease is more common in men than in women, with studies showing ratios ranging from between 1.4:1 to ratios as high as 1.9:1. Chef Kerry Simon died from complications of MSA.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
Although HSP is a progressive condition, the prognosis for individuals with HSP varies greatly. It primarily affects the legs although there can be some upperbody involvement in some individuals. Some cases are seriously disabling while others are less disabling and are compatible with a productive and full life. The majority of individuals with HSP have a normal life expectancy.
RHS type 1 is caused by the impairment of a regulatory mechanism between cerebellar and brainstem nuclei and has been associated with a wide range of diseases, including Lafora disease, dentatorubropallidoluysian atrophy, and celiac disease.
The prevalence of SCA6 varies by culture. In Germany, SCA6 accounts for 10-25% of all autosomal dominant cases of SCA (SCA itself having a prevalence of 1 in 100,000). This prevalence in lower in Japan, however, where SCA6 accounts for only ~6% of spinocerebellar ataxias. In Australia, SCA6 accounts for 30% of spinocerebellar ataxia cases while 11% in the Dutch.
Friedreich's ataxia is the most prevalent inherited ataxia, affecting about 1 in 50,000 people in the United States. Males and females are affected equally. The estimated carrier prevalence is 1:110.
A 1984 Canadian study was able to trace 40 cases of classical Friedreich's disease from 14 French-Canadian kindreds previously thought to be unrelated to one common ancestral couple arriving in New France in 1634: Jean Guyon and Mathurine Robin.
In terms of frequency, is estimated at 2 per 100,000, it has identified in different regions of the world. Some clusters of certain types of autosomal dominant cerebellar ataxia reach a prevalence of 5 per 100,000.
Friedreich's ataxia is an autosomal recessive inherited disease that causes progressive damage to the nervous system. It manifests in initial symptoms of poor coordination such as gait disturbance; it can also lead to scoliosis, heart disease and diabetes, but does not affect cognitive function. The disease is progressive, and ultimately a wheelchair is required for mobility. Its incidence in the general population is roughly 1 in 50,000.
The particular genetic mutation (expansion of an intronic GAA triplet repeat in the FXN gene) leads to reduced expression of the mitochondrial protein frataxin. Over time this deficiency causes the aforementioned damage, as well as frequent fatigue due to effects on cellular metabolism.
The ataxia of Friedreich's ataxia results from the degeneration of nervous tissue in the spinal cord, in particular sensory neurons essential (through connections with the cerebellum) for directing muscle movement of the arms and legs. The spinal cord becomes thinner and nerve cells lose some of their myelin sheath (the insulating covering on some nerve cells that helps conduct nerve impulses).
The condition is named after the German physician Nikolaus Friedreich, who first described it in the 1860s.
Ataxia with telangiectasia is a rare form ataxia that causes chromosomal instability, sensitivity to ionizing radiation, disrupted stress-activated signal transduction pathways and radioresistant DNA synthesis.
The genes that underlie majority of the symptoms for the different types of ataxia are still unknown. A productive cure is still unavailable to prevent the brain degeneration associated with ataxia.
Oculomotor ataxia accompanies gait ataxia which causes dysarthria, muscle weakness, loss of joint position sense and limb dysmetria. In some cases, patients have shown mental retardation and loss of myelinated axons.
Patients with severe forms of MJD have a life expectancy of approximately 35 years. Those with mild forms have a normal life expectancy. The cause of death of those who die early is often aspiration pneumonia.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
HSP is a group of genetic disorders. It follows general inheritance rules and can be inherited in an autosomal dominant, autosomal recessive or X-linked recessive manner. The mode of inheritance involved has a direct impact on the chances of inheriting the disorder. Over 70 genotypes had been described, and over 50 genetic loci have been linked to this condition. Ten genes have been identified with autosomal dominant inheritance. One of these SPG4 accounts for ~50% of all genetically solved cases cases, or approximately 25% of all HSP cases. Twelve genes are known to be inherited in an autosomal recessive fashion. Collectively this latter group account for ~1/3 cases.
Most altered genes have known function, but for some the function haven’t been identified yet. All of them are listed in the gene list below, including their mode of inheritance. Some examples are spastin (SPG4) and paraplegin (SPG7) are both AAA ATPases.
The cause of PBP is unknown. One form of PBP is found to occur within patients that have a CuZn-superoxide dismutase (SOD1) mutation. Progressive bulbar palsy patients that have this mutation are classified with FALS patients, Familial ALS (FALS) accounts for about 5%-10% of all ALS cases and is caused by genetic factors. Within these, about 20-25% are linked to the SOD1 mutation. It is not currently known if and how the decreased SOD1 activity contributes to Progressive Bulbar Palsy or FALS, and studies are being done in patients and transgenic mice to help further understand the impact of this gene on the disease.
A case study was done on a 42-year-old woman who complained of muscle weakness 10 months prior to admission in the hospital. Upon neurological examination, the patient showed muscle atrophy, fasciculation in all limbs and decreased deep tendon reflexes. The patient’s older brother, father, and paternal uncle had previously all died of ALS or an ALS type syndrome. The patient developed Progressive Bulbar Palsy, became dependent on a respirator, and had two episodes of cardiac arrest. The patient died from pneumonia two years after the onset of the disease. After studying the patient, it was found that the patient had a two base pair deletion in the 126th codon in exon 5 of the SOD1 gene. This mutation produced a frameshift mutation, which led to a stop codon at position 131. SOD1 activity was decreased by about 30%. The patient’s histological examination showed severe reduction in lower motor neurons. Upon further study, this case proved to be important because it demonstrated that SOD1 mutations might not effect steady neuropathological changes, and that environmental and genetic factors might affect the phenotype of the SOD1 mutations.
The life expectancy of people with A-T is highly variable. The average is approximately 25 years, but continues to improve with advances in care. The two most common causes of death are chronic lung disease (about one-third of cases) and cancer (about one-third of cases).
Spinocerebellar ataxia type 13 (SCA13) is a rare autosomal dominant disorder, which, like other types of SCA, is characterized by dysarthria, nystagmus, and ataxia of gait, stance and the limbs due to cerebellar dysfunction. Patients with SCA13 also tend to present with epilepsy, an inability to run, and increased reflexes. This cerebellar dysfunction is permanent and progressive. SCA13 is caused by mutations in KCNC3, a gene encoding a voltage-gated potassium channel K3.3. There are two known mutations in this gene causative for SCA13. Unlike many other types of SCA, these are not polyglutamine expansions but, rather, point mutations resulting in channels with no current or altered kinetics.
There are many causes of cerebellar ataxia including, among others, gluten ataxia, autoimmunity to Purkinje cells or other neural cells in the cerebellum, CNS vasculitis, multiple sclerosis, infection, bleeding, infarction, tumors, direct injury, toxins (e.g., alcohol), genetic disorders, and an association with statin use. Gluten ataxia accounts for 40% of all sporadic idiopathic ataxias and 15% of all ataxias.
People with A-T have a highly increased incidence (approximately 25% lifetime risk) of cancers, particularly lymphomas and leukemia, but other cancers can occur. When possible, treatment should avoid the use of radiation therapy and chemotherapy drugs that work in a way that is similar to radiation therapy (radiomimetic drugs), as these are particularly toxic for people with A-T. The special problems of managing cancer are sufficiently complicated that treatment should be done only in academic oncology centers and after consultation with physicians who have specific expertise in A-T. Unfortunately, there is no way to predict which individuals will develop cancer. Because leukemia and lymphomas differ from solid tumors in not progressing from solitary to metastatic stages, there is less need to diagnose them early in their appearance. Surveillance for leukemia and lymphoma is thus not helpful, other than considering cancer as a diagnostic possibility whenever possible symptoms of cancer (e.g. persistent swollen lymph glands, unexplained fever) arise.
Women who are A-T carriers (who have one mutated copy of the ATM gene), have approximately a two-fold increased risk for the development of breast cancer compared to the general population. This includes all mothers of A-T children and some female relatives. Current consensus is that special screening tests are not helpful, but all women should have routine cancer surveillance.
NPCA is a syndrome and can have diverse causes. It has a genetic basis and inheritance is considered to be autosomal recessive. However, autosomal dominant variety has also been reported. There may be familial balanced translocation t(8;20)(p22;q13) involved.