Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
By 1990, 65 patients had been reported in the literature, with no sex or ethnic preference notable. Some individuals present with minimal malformation; rarely patients have died during infancy as a result of severe central nervous system involvement or respiratory complications. Several syndromes are related to the Freeman–Sheldon syndrome spectrum, but more information is required before undertaking such nosological delineation.
ODD is typically an autosomal dominant condition, but can be inherited as a recessive trait. It is generally believed to be caused by a mutation in the gene GJA1, which codes for the gap junction protein connexin 43. Slightly different mutations in this gene may explain the different way the condition manifests in different families. Most people inherit this condition from one of their parents, but new cases do arise through novel mutations. The mutation has high penetrance and variable expression, which means that nearly all people with the gene show signs of the condition, but these signs can range from very mild to very obvious.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
There are little data on prognosis. Rarely, some patients have died in infancy from respiratory failure; otherwise, life expectancy is considered to be normal.
Ectrodactyly–ectodermal dysplasia–cleft syndrome, or EEC, and also referred to as EEC syndrome (also known as "Split hand–split foot–ectodermal dysplasia–cleft syndrome") is a rare form of ectodermal dysplasia, an autosomal dominant disorder inherited as an genetic trait. EEC is characterized by the triad of ectrodactyly, ectodermal dysplasia, and facial clefts. Other features noted in association with EEC include vesicoureteral reflux, recurrent urinary tract infections, obstruction of the nasolacrimal duct, decreased pigmentation of the hair and skin, missing or abnormal teeth, enamel hypoplasia, absent punctae in the lower eyelids, photophobia, occasional cognitive impairment and kidney anomalies, and conductive hearing loss.
OAFNS is a combination of FND and oculo-auriculo-vertebral spectrum (OAVS).
The diagnosis of OAVS is based on the following facial characteristics: microtia (underdeveloped external ear), preauricular tags, facial asymmetry, mandibular hypoplasia and epibulbar lipodermoids (benign tumor of the eye which consists of adipose and fibrous tissue).
There still remains discussion about the classification and the minimal amount of characteristics. When someone presents with FND and the characteristics of OAVS, the diagnosis OAFNS may be made.
As the incidence of OAFNS is unknown, there are probably a lot of children with mild phenotypes that aren’t being diagnosed as being OAFNS.
The cause of OAFNS is unknown, but there are some theories about the genesis. Autosomal recessive inheritance is suggested because of a case with two affected siblings and a case with consanguineous parents. However, another study shows that it is more plausible that OAFNS is sporadic.
It is known that maternal diabetes plays a role in developing malformations of craniofacial structures and in OAVS. Therefore, it is suggested as a cause of OAFNS. Folate deficiency is also suggested as possible mechanism.
Low-dose CT protocols should be considered in diagnosing children with OAFNS.
The autosomal dominant form is caused by a mutation in ANKH on chromosome 5 (5p15.2-p14.1). The autosomal recessive form is caused by a mutation in a mutation in GJA1 on chromosome 6 (6q21-q22). The recessive form tends to be more severe than the dominant form.
The cause of Primrose syndrome is currently unknown. This condition is extremely rare and seems to spontaneously occur, regardless of family history.
In the case studied by Dalai et al. in 2010, it was found that an abnormally high amount of calcitonin, a hormone secreted by the thyroid gland to stabilize blood calcium levels, was present in the blood serum. This suggests that the thyroid gland is releasing an abnormal amount of calcitonin, resulting in the disruption of calcium level homeostasis. No molecular cause was found, but an expanded microarray analysis of the patient found a 225.5 kb deletion on chromosome 11p between rs12275693 and rs1442927. Whether or not this deletion is related to the syndrome or is a harmless mutation is unknown. The deletion was not present in the patient's mother's DNA sample, but the father's DNA was unavailable.
Though the children affected with CLSD will have problems throughout life, the treatment for this disease thus far is symptomatic. However, prognosis is good; at the time of the most recently published articles, identified children were still alive at over 4 years of age.
Mutant proteins still maintain some residual activity, allowing for the release of some collagen, but still form an extremely distended endoplasmic reticulum.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Cranio–lenticulo–sutural dysplasia (CLSD, or Boyadjiev-Jabs syndrome) is a neonatal/infancy disease caused by a disorder in the 14th chromosome. It is an autosomal recessive disorder, meaning that both recessive genes must be inherited from each parent in order for the disease to manifest itself. The disease causes a significant dilation of the endoplasmic reticulum in fibroblasts of the host with CLSD. Due to the distension of the endoplasmic reticulum, export of proteins (such as collagen) from the cell is disrupted.
The production of SEC23A protein is involved in the pathway of exporting collagen (the COPII pathway), but a missense mutation causes and underproduction of SEC23A which inhibits the pathway, affecting collagen secretion. This decrease in collagen secretion can lead to the bone defects that are also characteristic of the disease, such as skeletal dysplasia and under-ossification. Decreased collagen in CLSD-affected individuals contributes to improper bone formation, because collagen is a major protein in the extracellular matrix and contributes to its proper mineralization in bones. It has also been hypothesized that there are other defects in the genetic code besides SEC23A that contribute to the disorder.
Hay–Wells syndrome is also known as AEC syndrome; this is short for "ankyloblepharon–ectodermal dysplasia–clefting syndrome", "ankyloblepharon filiforme adnatum–ectodermal dysplasia–cleft palate syndrome", "ankyloblepharon–ectodermal defects–cleft lip/palate (AEC) syndrome", "ankyloblepharon–ectodermal defect–cleft lip and/or palate syndrome", or "ankyloblepharon ectodermal dysplasia and clefting". Hay–Wells syndrome, or Ankyloblepharon-Ectodermal Dysplasia-Clefting (AEC) syndrome, is one of over one-hundred forms of ectodermal dysplasia; a collection of inherited diseases that cause atypical development of nails, glands, teeth, and hair. Males and females are equally affected by Hay–Wells syndrome. No demographic has been shown to be especially susceptible to the syndrome. In the United States, Hay-Wells like syndromes occur in only one in 100,000 births. Symptoms are apparent at birth, or become apparent when atypical development of teeth occurs. Major symptoms of Hay–Wells syndrome include: sparse hair and eyelashes, missing teeth, cleft palate, cleft lip with fusing of the upper and lower eyelids, and deformed nails. Therefore, a diagnosis of Hay–Wells syndrome is largely based upon the physical clinical presentation of the patient.
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
Rosselli–Gulienetti syndrome, also known as Zlotogora–Ogur syndrome and Bowen–Armstrong syndrome, is a type of congenital ectodermal dysplasia syndrome. The syndrome is relatively rare and has only been described in a few cases.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
Liebenberg Syndrome is a rare autosomal genetic disease that involves a deletion mutation upstream of the PITX1 gene, which is one that's responsible for the body's organization, specifically in forming lower limbs. In animal studies, when this deletion was introduced to developing birds, their wing buds were noted to take on limb-like structures.
The condition was first described by Dr. F. Liebenberg in 1973 while he followed multiple generations of a South African family, but it has since been noticed in other family lineages across the world.
There is no specific treatment or cure for individuals affected with this type of syndrome, though some of the abnormal physical features may be surgically correctable.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
Symptoms include gingival fibromatosis, associated with hypoplasia of the distal phalanges, nail dysplasia, joint hypermobility, and sometimes hepatosplenomegaly. The nose and pinnae are usually large and poorly developed, which gives the individuals with the syndrome abnormal facial characteristics. Mental retardation may also occur. Both males and females are equally affected. Gingival fibromatosis is usually present at birth or appears short after. The term Zimmermann–Laband was coined by Carl Jacob Witkop in 1971.
Presence of inner ear abnormalities lead to Delayed gross development of child because of balance impairment and profound deafness which increases the risk of trauma and accidents.
- Incidence of accidents can be decreased by using visual or vibrotactile alarm systems in homes as well as in schools.
- Anticipatory education of parents, health providers and educational programs about hazards can help.
Spondyloepimetaphyseal dysplasia, Pakistani type is a form of spondyloepimetaphyseal dysplasia involving "PAPSS2" (also known as "ATPSK2"). The condition is rare.
Individuals affected by certain ED syndromes cannot perspire. Their sweat glands may function abnormally or may not have developed at all because of inactive proteins in the sweat glands. Without normal sweat production, the body cannot regulate temperature properly. Therefore, overheating is a common problem, especially during hot weather. Access to cool environments is important.