Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Papillorenal syndrome, also called renal-coloboma syndrome or isolated renal hypoplasia, is an autosomal dominant genetic disorder marked by underdevelopment (hypoplasia) of the kidney and colobomas of the optic nerve.
Sequence analysis shows that "Pax2" is the only known gene associated with the disease. Mutations in Pax2 have been identified in half of renal coloboma syndrome victims.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
The most extensive epidemiological survey on this congenital malformation has been carried out by Dharmasena et al and using English National Hospital Episode Statistics, they calculated the annual incidence of anophthalmia, microphthalmia and congenital malformations of orbit/lacrimal apparatus from 1999 to 2011. According to this study the annual incidence of congenital microphthalmia in the United Kingdom was 10.8 (8.2 to 13.5) in 1999 and 10.0 (7.6 to 12.4) in 2011.
Aniridia is the absence of the iris, usually involving both eyes. It can be congenital or caused by a penetrant injury. Isolated aniridia is a congenital disorder which is not limited to a defect in iris development, but is a panocular condition with macular and optic nerve hypoplasia, cataract, and corneal changes. Vision may be severely compromised and the disorder is frequently associated with a number of ocular complications: nystagmus, amblyopia, buphthalmos, and cataract. Aniridia in some individuals occurs as part of a syndrome, such as WAGR syndrome (kidney nephroblastoma (Wilms tumour), genitourinary anomalies and intellectual disability), or Gillespie syndrome (cerebellar ataxia).
Aniridia may be broadly divided into hereditary and sporadic forms. Hereditary aniridia is usually transmitted in an autosomal dominant manner (each offspring has a 50% chance of being affected), although rare autosomal recessive forms (such as Gillespie syndrome) have also been reported. Sporadic aniridia mutations may affect the WT1 region adjacent to the AN2 aniridia region, causing a kidney cancer called nephroblastoma (Wilms tumor). These patients often also have genitourinary abnormalities and intellectual disability (WAGR syndrome).
Several different mutations may affect the PAX6 gene. Some mutations appear to inhibit gene function more than others, with subsequent variability in the severity of the disease. Thus, some aniridic individuals are only missing a relatively small amount of iris, do not have foveal hypoplasia, and retain relatively normal vision. Presumably, the genetic defect in these individuals causes less "heterozygous insufficiency," meaning they retain enough gene function to yield a milder phenotype.
- AN
- Aniridia and absent patella
- Aniridia, microcornea, and spontaneously reabsorbed cataract
- Aniridia, cerebellar ataxia, and mental deficiency (Gillespie syndrome)
Microphthalmia in newborns is sometimes associated with fetal alcohol syndrome or infections during pregnancy, particularly herpes simplex virus, rubella and cytomegalovirus (CMV), but the evidence is inconclusive. Genetic causes of microphthalmia include chromosomal abnormalities (Trisomy 13 (Patau syndrome), Triploid Syndrome, 13q deletion syndrome, and Wolf-Hirschhorn Syndrome) or monogenetic Mendelian disorders. The latter may be autosomal dominant, autosomal recessive or X linked.
The following genes have been implicated in microphthamia, many of which are transcription and regulatory factors:
How these genes result in the eye disorder is unknown but it has been postulated that interference with the process of eye growth after birth may be involved in contrast to anophthalmia (absence of eyeball) which originates much earlier during foetal development. SOX2 has been implicated in a substantial number (10-15%) of cases and in many other cases failure to develop the ocular lens often results in microphthamia. Microphthalmia-associated transcription factor (MITF) located on chromosome 14q32 is associated with one form of isolated microphthalmia (MCOP1. In mammals the failure of expression of the transcription factor, MITF (microphthalmia-associated transcription factor), in the pigmented retina prevents this structure from fully differentiating. This in turn causes a malformation of the choroid fissure of the eye, resulting in the drainage of vitreous humor fluid. Without this fluid, the eye fails to enlarge, thus the name microphthalmia.The gene encoding the microphthalmia-associated transcription factor (MITF) is a member of the basic helix-loop-helix-leucine zipper (bHLH-ZIP) family. Waardenburg syndrome type 2 (WS type 2) in humans is also a type of microphthalmia syndrome. Mutations in MITF gene are thought to be responsible for this syndrome. The human MITF gene is homologous to the mouse MITF gene (aka mouse mi or microphthalmia gene); mouse with mutations in this gene are hypopigmented in their fur. The identification of the genetics of WS type 2 owes a lot to observations of phenotypes of MITF mutant mice.
Many environmental conditions have also been known to cause anophthalmia. The strongest support for environmental causes has been studies where children have had gestational-acquired infections. These infections are typically viral. A few known pathogens that can cause anophthalmia are Toxoplasma, rubella, and certain strains of the influenza virus. Other known environmental conditions that have led to anophthalmia are maternal vitamin A deficiency, exposure to X-rays during gestation, solvent abuse, and exposure to thalidomide.
No specific treatment is available. Management is only supportive and preventive.
Those who are diagnosed with the disease often die within the first few months of life. Almost all children with the disease die by the age of three.
WAGR syndrome is caused by a mutation on chromosome 11 in the 11p13 region. Specifically, several genes in this area are deleted, including the PAX6 ocular development gene and the Wilms' tumour gene (WT1). Abnormalities in WT1 may also cause genitourinary anomalies. Mutations in the PAX6 gene have recently been shown to not only cause ocular abnormalities, but also problems in the brain and pancreas.
The gene for brain-derived neurotrophic factor (BDNF), located on 11p14.1, has been proposed as a candidate gene for the obesity and excessive eating in a subset of WAGR patients. This strengthens the case for a role for BDNF in energy balance.
Children with WAGR syndrome receive regular (3-4 yearly) kidney surveillance for Wilms' tumour until at least the age of 6–8 years and thereafter remain under some follow-up because of the risk of late onset nephropathy (40% of patients over the age of 12 years). Females with WAGR syndrome may have streak ovaries, which can increase the risk for gonadoblastoma. Malformations of the vagina and/or uterus may also be present.
The varied signs and symptoms of Duane-radial ray syndrome often overlap with features of other disorders.
- For example, acro-renal-ocular syndrome is characterized by Duane anomaly and other eye abnormalities, radial ray malformations, and kidney defects. Both conditions can be caused by mutations in the same gene. Based on these similarities, researchers are investigating whether Duane-radial ray syndrome and acro-renal-ocular syndrome are separate disorders or part of a single syndrome with many possible signs and symptoms.
- The features of Duane-radial ray syndrome also overlap with those of a condition called Holt-Oram syndrome; however, these two disorders are caused by mutations in different genes.
Overall, the estimated prevalence of Stickler syndrome is about 1 in 10,000 people. Stickler syndrome affects 1 in 7,500 to 9,000 newborns.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
An interstitial deletion of chromosome 14 has been known to occasionally be the source of anophthalmia. The deletion of this region of chromosome has also been associated with patients having a small tongue, and high arched palate, developmental and growth retardation, undescended testes with a micropenis, and hypothyroidism. The region that has been deleted is region q22.1-q22.3. This confirms that region 22 on chromosome 14 influences the development of the eye.
Norrie disease is a genetic disorder that primarily affects the eye and almost always leads to blindness. In addition to the congenital ocular symptoms, some patients suffer from a progressive hearing loss starting mostly in their 2nd decade of life, and some may have learning difficulties.
Patients with Norrie disease may develop cataracts, leukocoria (a condition where the pupils appear white when light is shone on them), along with other developmental issues in the eye, such as shrinking of the globe and the wasting away of the iris. Around 30 to 50% of them will also have developmental delay/learning difficulties, psychotic-like features, incoordination of movements or behavioral abnormalities. Most patients are born with normal hearing; however, the onset of hearing loss is very common in early adolescence. About 15% of patients are estimated to develop all the features of the disease.
The disease affects almost only male infants, because the disease is inherited X-linked recessive. Only in very rare cases, females have been diagnosed with Norrie disease as well. The exact incidence number is unknown; only a few hundred cases have been reported. It is a very rare disorder that is not associated with any specific ethnic or racial groups.
In the United States, the incidence of primary congenital glaucoma is about one in 10,000 live births. Worldwide, the incidence ranges from a low of 1:22,000 in Northern Ireland to a high of 1:2,500 in Saudi Arabia and 1:1,250 in Romania. In about two-thirds of cases, it is bilateral. The distribution between males and females varies with geography. In North America and Europe it is more common in boys, whereas in Japan it is more common in girls.
- Congenital glaucoma
- Incidence: one in every 10000-15000 live births.
- Bilateral in up to 80% of cases.
- Most cases are sporadic (90%). However, in the remaining 10% there appears to be a strong familial component.
Many professionals that are likely to be involved in the treatment of those with Stickler's syndrome, include anesthesiologists, oral and maxillofacial surgeons; craniofacial surgeons; ear, nose, and throat specialists, ophthalmologists, optometrists, audiologists, speech pathologists, physical therapists and rheumatologists.
Duane-radial ray syndrome is caused by mutations in the "SALL4" gene which is a part of a group of genes called the SALL family. This gene plays an important role in embryonic development by providing instructions to make proteins that are involved in the formation of tissues and organs. SALL proteins act as transcription factors in that they attach themselves to certain regions in DNA in order to help control certain gene activities. Due to the mutations in the "SALL4" gene, proteins can not be made because one copy of the gene in each cell is stopped from performing its duty. These mutations are heterozygous and can be nonsense, short duplications, or deletions. At this time, there is no clear reason as to why a reduced amount of the SALL4 protein causes the symptoms of Duane-radial ray syndrome and similar conditions.
Duane-radial ray syndrome is inherited through autosomal dominance meaning that a mutation in one copy of the SALL 4 gene is all it takes to cause this syndrome. Those with this condition can have affected parents, but it can also manifest for the first time with no family history which is called de novo. Since Duane-radial ray syndrome is an autosomal dominant disorder, there is a 50% chance of passing the mutation on to offspring.
In itself, NSML is not a life-threatening diagnosis, most people diagnosed with the condition live normal lives. Obstructive cardiomyopathy and other pathologic findings involving the cardiovascular system may be a cause of death in those whose cardiac deformities are profound.
Eye surgery has been documented to help those with ocular diseases, such as some forms of glaucoma.
However, long term medical management of glaucoma has not proven to be successful for patients with Weill–Marchesani syndrome. Physical therapy and orthopedic treatments are generally prescribed for problems stemming from mobility from this connective tissue disorder. However, this disorder has no cure, and generally, treatments are given to improve quality of life.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
Kearns–Sayre syndrome occurs spontaneously in the majority of cases. In some cases it has been shown to be inherited through mitochondrial, autosomal dominant, or autosomal recessive inheritance. There is no predilection for race or sex, and there are no known risk factors. As of 1992 there were only 226 cases reported in published literature.
Weill–Marchesani syndrome is a rare genetic disorder characterized by short stature; an unusually short, broad head (brachycephaly) and other facial abnormalities; hand defects, including unusually short fingers (brachydactyly); and distinctive eye (ocular) abnormalities. It was named after ophthalmologists Georges Weill (1866-1952) and Oswald Marchesani (1900-1952) who first described it in 1932 and 1939, respectively.
The eye manifestations typically include unusually small, round lenses of the eyes (spherophakia), which may be prone to dislocating (ectopia lentis), as well as other ocular defects. Due to such abnormalities, affected individuals may have varying degrees of visual impairment, ranging from nearsightedness myopia to blindness. Researchers suggest that Weill–Marchesani syndrome may have autosomal recessive or autosomal dominant inheritance.
Several genes have been implicated in the etiology of Walker–Warburg syndrome, and others are as yet unknown. Several mutations were found in the protein O-Mannosyltransferase POMT1 and POMT2 genes, and one mutation was found in each of the fukutin and fukutin-related protein genes. Another gene that has been linked to this condition is Beta-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2).