Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Environmental influences may also cause, or interact with genetics to produce, orofacial clefting. An example of how environmental factors might be linked to genetics comes from research on mutations in the gene "PHF8" that cause cleft lip/palate (see above). It was found that PHF8 encodes for a histone lysine demethylase, and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a fact considered important with respect to reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy. In humans, fetal cleft lip and other congenital abnormalities have also been linked to maternal hypoxia, as caused by e.g. maternal smoking, maternal alcohol abuse or some forms of maternal hypertension treatment. Other environmental factors that have been studied include: seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids — which are members of the vitamin A family; anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).
Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
These lesions usually present in neonates, although they may not come to clinical attention until adulthood (for cosmetic reasons). There is no gender predilection. They are present in approximately 3-6 per 1000 live births.
Many genes associated with syndromic cases of cleft lip/palate (see above) have been identified to contribute to the incidence of isolated cases of cleft lip/palate. This includes in particular sequence variants in the genes "IRF6", "PVRL1" and "MSX1". The understanding of the genetic complexities involved in the morphogenesis of the midface, including molecular and cellular processes, has been greatly aided by research on animal models, including of the genes "BMP4", "SHH", "SHOX2", "FGF10" and "MSX1".
A high-arched palate (also termed high-vaulted palate) is where the palate is unusually high and narrow. It is usually a developmental feature that may occur in isolation or in association with a number of conditions. It may also be an acquired condition caused by chronic thumb-sucking. High-arched palate may cause narrowed airway and sleep disordered breathing.
Example conditions which may be associated with high-arched palate include:
- Crouzon syndrome
- Down syndrome
- Apert syndrome
- Treacher Collins syndrome
- Marfan syndrome
- Incontinentia pigmenti
The cause of Goldenhar syndrome is largely unknown. However, it is thought to be multifactorial, although there may be a genetic component, which would account for certain familial patterns. It has been suggested that there is a branchial arch development issue late in the first trimester.
An increase in Goldenhar syndrome in the children of Gulf War veterans has been suggested, but the difference was shown to be statistically insignificant.
Surgery is needed to prevent the closing of the coronal sutures from damaging brain development. In particular, surgeries for the LeFort III or monobloc midface distraction osteogenesis which detaches the midface or the entire upper face, respectively, from the rest of the skull, are performed in order to reposition them in the correct plane. These surgeries are performed by both plastic and oral and maxillofacial (OMS) surgeons, often in collaboration.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Prevalence ranges from 1 in 3500 to 5600 live births. Male-female ratio is found to be 3:2.
It is not known how this abnormality occurs in infants, but one theory is that, at some time during the stage of the formation of the bones of the fetus, the tip of the jaw (mandible) becomes 'stuck' in the point where each of the collar bones (clavicle) meet (the sternum), effectively preventing the jaw bones from growing. It is thought that, at about 12 to 14 weeks gestation, when the fetus begins to move, the movement of the head causes the jaw to "pop out' of the collar bones. From this time on, the jaw of the fetus grows as it would normally, with the result that, when born, the jaw of the baby is much smaller (micrognathia) than it would have been with normal development, although it does continue to grow at a normal rate until the child reaches maturity.
However, association with gene loci 2q24.1-33.3, 4q32-qter, 11q21-23.1, and 17q21-24.3 has been found. Recent studies have indicated that genetic dysregulation of SOX9 gene prevents the SOX9 protein from properly controlling the development of facial structures, which leads to isolated PRS. Similarly, KCNJ2 gene also has a role to play. Overlap with certain other genetic syndromes like Patau syndrome has also been found.
PRS may occur in isolation, but it is often part of an underlying disorder or syndrome. The most common is Stickler Syndrome. Other disorders causing PRS, according to Dr. Robert J. Sphrintzen Ph.D. of the Center for Craniofacial Disorders Montefiore Medical Center, are Velocardiofacial syndrome, Fetal Alcohol Syndrome and Treacher Collins Syndrome. For more disorders associated with PRS see Dr. Sphrintzen's article entitled "The Implications of the Diagnosis of Robin Sequence".
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
An accessory auricle is considered a developmental anomaly resulting from the persistence of a structure which variably recapitulates the normal external ear.
Möbius syndrome results from the underdevelopment of the VI and VII cranial nerves. The VI cranial nerve controls lateral eye movement, and the VII cranial nerve controls facial expression.
The causes of Möbius syndrome are poorly understood. Möbius syndrome is thought to result from a vascular disruption (temporary loss of bloodflow) in the brain during prenatal development. There could be many reasons that a vascular disruption leading to Möbius syndrome might occur. Most cases do not appear to be genetic. However, genetic links have been found in a few families. Some maternal trauma may result in impaired or interrupted blood flow (ischemia) or lack of oxygen (hypoxia) to a developing fetus. Some cases are associated with reciprocal translocation between chromosomes or maternal illness. In the majority of cases of Möbius syndrome in which autosomal dominant inheritance is suspected, sixth and seventh cranial nerve paralysis (palsy) occurs without associated limb abnormalities.
The use of drugs and a traumatic pregnancy may also be linked to the development of Möbius syndrome. The use of the drugs misoprostol or thalidomide by women during pregnancy has been linked to the development of Möbius syndrome in some cases. Misoprostol is used to induce abortions in Brazil and Argentina as well as in the United States. Misoprostol abortions are successful 90% of the time, meaning that 10% of the time the pregnancy continues. Studies show that the use of misoprostal during pregnancy increases the risk of developing Möbius syndrome by a factor of 30. While this is a dramatic increase in risk, the incidence of Möbius syndrome without misoprostal use is estimated at one in 50000 to 100000 births (making the incidence of Möbius syndrome with misoprostol use, less than one in 1000 births). The use of cocaine (which also has vascular effects) has been implicated in Möbius syndrome.
Some researchers have suggested that the underlying problem of this disorder could be congenital hypoplasia or agenesis of the cranial nerve nuclei. Certain symptoms associated with Möbius syndrome may be caused by incomplete development of facial nerves, other cranial nerves, and other parts of the central nervous system.
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
Between age 5 and 7, most children start losing their primary teeth. Occasionally, some primary teeth are slow to exfoliate (fall out), and the dentist may want to remove a primary tooth early to prevent orthodontic problems. Likewise, premature loss of primary teeth may create orthodontic problems later on. When a tooth is lost prematurely, removable or fixed spacers may be needed to prevent the shifting of teeth. Interceptive orthodontic treatment can be initiated at this stage of development to help with crowding or to help relate the upper and lower jaws. Consistent with a high palate is a narrow arch shape of the upper teeth as they line up in the mouth. This may cause the upper front teeth to flare out and become more prone to fracture if accidentally hit. Interceptive orthodontics has an important role in this situation. Appliances that expand the upper arch tend to bring the front teeth back into a more-normal position. Some appliances can even help allow the front teeth to close to normal in an open-bite situation. The mouth and lips may tend to get dry with the Möbius patient. Lack of a good oral seal (lips together) allows the gingiva (gums) to get dry and may get inflamed and irritated.
Macrostomia, (from the Greek prefix "makro-" meaning "large" and from Greek , "mouth") refers to a mouth that is unusually wide.
Macrostomia is characterized as a physical abnormality that causes clefts to form on the face of affected individuals. These clefts can form on either or both sides of the face, but they are most commonly seen on the right cheek and have a higher rate of occurrence in males. Macrostomia is very irregular and on average occurs only once in every 150,000 to 300,000 live births. It's unusual for macrostomia to occur on its own and it is included as a symptom for many diseases including craniofacial microsomia. The clefts result from improper development and fusion of the mandibular and maxillary processes. The clefts cause problems with facial muscle development. The origin of macrostomia is not yet fully understood it could have multiple causes.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
Glossoptosis is a medical condition and abnormality which involves the downward displacement or retraction of the tongue. It may cause non-fusion of the hard palate causing cleft palate.
It is one of the features of Pierre Robin sequence and Down syndrome.
There are 4 distinct variations of macrostomia. Classifications are a complete lateral facial cleft, simple macrostomia, macrostomia with diastasis of the facial musculature, and isolated facial musculature diastasis. Each has a different physical appearance with varying levels of severity.
The cleft associated with macrostomia is associated with improper or failed fusion of the mandibular and maxillary processes during embryonic development. This can lead to a variety of abnormalities involving skin, subcutaneous tissue, facial muscles, and the mucous membrane. The severity of each abnormality can vary from minor to severe. Environmental contaminants may play a role in causing macrostomia. Many affected individuals were found in Lagos, an industrial area of Nigeria, where water supplies are known to be contaminated by improper disposal of industrial and domestic waste.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Hemifacial microsomia (HFM) is a congenital disorder that affects the development of the lower half of the face, most commonly the ears, the mouth and the mandible. It usually occurs on one side of the face, but both sides are sometimes affected. If severe, it may result in difficulties in breathing due to obstruction of the trachea—sometimes even requiring a tracheotomy. With an incidence in the range of 1:3500 to 1:4500, it is the second most common birth defect of the face, after cleft lip and cleft palate. HFM shares many similarities with Treacher Collins syndrome.