Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Glanders (from Middle English ' or Old French ', both meaning glands; , ; also known as "equinia", "farcy", and "malleus") is an infectious disease that occurs primarily in horses, mules, and donkeys. It can be contracted by other animals, such as dogs, cats, goats and humans. It is caused by infection with the bacterium "Burkholderia mallei", usually by ingestion of contaminated feed or water. Signs of glanders include the formation of nodular lesions in the lungs and ulceration of the mucous membranes in the upper respiratory tract. The acute form results in coughing, fever, and the release of an infectious nasal discharge, followed by septicaemia and death within days. In the chronic form, nasal and subcutaneous nodules develop, eventually ulcerating. Death can occur within months, while survivors act as carriers.
Glanders is endemic in Africa, Asia, the Middle East, and Central and South America. It has been eradicated from North America, Australia, and most of Europe through surveillance and destruction of affected animals, and import restrictions.
"B. mallei" is able to infect humans, so is classed as a zoonotic agent. Transmission occurs by direct contact with infected animals and entry is through skin abrasions, nasal and oral mucosal surfaces, or by inhalation.
The mallein test is a sensitive and specific clinical test for glanders. Mallein (ATCvet code: ), a protein fraction of the glanders organism ("B. mallei"), is injected intradermopalpebrally or given by eye drop. In infected animals, the eyelid swells markedly in 1 to 2 days.
Glanders has not been reported in the United States since 1945, except in 2000 when an American lab researcher suffered from accidental exposure. It is a notifiable disease in the UK, although it has not been reported there since 1928.
No vaccine is licensed for use in the U.S. Infection with either of these bacteria results in nonspecific symptoms and can be either acute or chronic, impeding rapid diagnosis. The lack of a vaccine for either bacterium also makes them potential candidates for bioweaponization. Together with their high rate of infectivity by aerosols and resistance to many common antibiotics, both bacteria have been classified as category B priority pathogens by the US NIH and US CDC, which has spurred a dramatic increase in interest in these microorganisms. Attempts have been made to develop vaccines for these infections, which would not only benefit military personnel, a group most likely to be targeted in an intentional release, but also individuals who may come in contact with glanders-infected animals or live in areas where melioidosis is endemic.
Person-to-person transmission is exceedingly unusual; and patients with melioidosis should not be considered contagious. Lab workers should handle "B. pseudomallei" under BSL-3 isolation conditions, as laboratory-acquired melioidosis has been described.
In endemic areas, people (rice-paddy farmers in particular) are warned to avoid contact with soil, mud, and surface water where possible. Case clusters have been described following flooding and cyclones and probably relate to exposure. Other case clusters have related to contamination of drinking water supplies. Populations at risk include patients with diabetes mellitus, chronic renal failure, chronic lung disease, or an immune deficiency of any kind. The effectiveness of measures to reduce exposure to the causative organism have not been established. A vaccine is not yet available.
After exposure to "B. pseudomallei" (particularly following a laboratory accident) combined treatment with co-trimoxazole and doxycycline is recommended. Trovafloxacin and grepafloxacin have been shown to be effective in animal models.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
People with CGD are sometimes infected with organisms that usually do not cause disease in people with normal immune systems. Among the most common organisms that cause disease in CGD patients are:
- bacteria (particularly those that are catalase-positive)
- "Staphylococcus aureus".
- "Serratia marcescens".
- "Listeria" species.
- "E. coli".
- "Klebsiella" species.
- "Pseudomonas cepacia, a.k.a. Burkholderia cepacia.
- "Nocardia".
- fungi
- "Aspergillus" species. Aspergillus has a propensity to cause infection in people with CGD and of the Aspergillus species, "Aspergillus fumigatus" seems to be most common in CGD.
- "Candida" species.
Patients with CGD can usually resist infections of catalase-negative bacteria but are susceptible to catalase-positive bacteria. Catalase is an enzyme that catalyzes the breakdown of hydrogen peroxide in many organisms. In infections caused by organisms that lack catalase (catalase-negative), the host with CGD is successfully able to "borrow" hydrogen peroxide being made by the organism and use it to fight off the infection. In infections by organisms that have catalase (catalase-positive), this "borrowing mechanism" is unsuccessful because the catalase enzyme first breaks down any hydrogen peroxide that would be borrowed from the organism. Therefore in the CGD patient, hydrogen peroxide cannot be used to make oxygen radicals to fight infection, leaving the patient vulnerable to infection by catalase-positive bacteria.
There are currently no studies detailing the long term outcome of chronic granulomatous disease with modern treatment. Without treatment, children often die in the first decade of life. The increased severity of X-linked CGD results in a decreased survival rate of patients, as 20% of X-linked patients die of CGD-related causes by the age of 10, whereas 20% of autosomal recessive patients die by the age of 35.
Recent experience from centers specializing in the care of patients with CGD suggests that the current mortality has fallen to under 3% and 1% respectively.
CGD was initially termed "fatal granulomatous disease of childhood" because patients rarely survived past their first decade in the time before routine use of prophylactic antimicrobial agents. The average patient now survives at least 40 years.
In children, the long bones are usually affected. In adults, the vertebrae and the pelvis are most commonly affected.
Acute osteomyelitis almost invariably occurs in children because of rich blood supply to the growing bones. When adults are affected, it may be because of compromised host resistance due to debilitation, intravenous drug abuse, infectious root-canaled teeth, or other disease or drugs (e.g., immunosuppressive therapy).
Osteomyelitis is a secondary complication in 1–3% of patients with pulmonary tuberculosis. In this case, the bacteria, in general, spread to the bone through the circulatory system, first infecting the synovium (due to its higher oxygen concentration) before spreading to the adjacent bone. In tubercular osteomyelitis, the long bones and vertebrae are the ones that tend to be affected.
"Staphylococcus aureus" is the organism most commonly isolated from all forms of osteomyelitis.
Bloodstream-sourced osteomyelitis is seen most frequently in children, and nearly 90% of cases are caused by "Staphylococcus aureus". In infants, "S. aureus", Group B streptococci (most common) and "Escherichia coli" are commonly isolated; in children from one to 16 years of age, "S. aureus", "Streptococcus pyogenes", and "Haemophilus influenzae" are common. In some subpopulations, including intravenous drug users and splenectomized patients, Gram-negative bacteria, including enteric bacteria, are significant pathogens.
The most common form of the disease in adults is caused by injury exposing the bone to local infection. "Staphylococcus aureus" is the most common organism seen in osteomyelitis, seeded from areas of contiguous infection. But anaerobes and Gram-negative organisms, including "Pseudomonas aeruginosa", "E. coli", and "Serratia marcescens", are also common. Mixed infections are the rule rather than the exception.
Systemic mycotic (fungal) infections may also cause osteomyelitis. The two most common are "Blastomyces dermatitidis" and "Coccidioides immitis".
In osteomyelitis involving the vertebral bodies, about half the cases are due to "S. aureus", and the other half are due to tuberculosis (spread hematogenously from the lungs). Tubercular osteomyelitis of the spine was so common before the initiation of effective antitubercular therapy, it acquired a special name, Pott's disease.
The "Burkholderia cepacia" complex has been implicated in vertebral osteomyelitis in intravenous drug users.
Osteomyelitis (OM) is an infection of bone. Symptoms may include pain in a specific bone with overlying redness, fever, and weakness. The long bones of the arms and legs are most commonly involved in children while the feet, spine, and hips are most commonly involved in adults.
The cause is usually a bacterial infection and rarely a fungal infection. It may occur via spread from the blood or from surrounding tissue. Risks for developing osteomyelitis include diabetes, intravenous drug use, prior removal of the spleen, and trauma to the area. Diagnosis is typically suspected based on symptoms. This is then supported by blood tests, medical imaging, or bone biopsy.
Treatment often involves both antimicrobials and surgery. In those with poor blood flow, amputation may be required. With treatment outcomes are often generally good when the condition has only been present a short time. About 2.4 per 100,000 people are affected a year. The young and old are more commonly affected. Males are more commonly affected than females. The condition was described at least as early as the 300s BC by Hippocrates. Before the availability of antibiotics the risk of death was significant.
The ΔF508 mutation is estimated to be up to 52,000 years old. Numerous hypotheses have been advanced as to why such a lethal mutation has persisted and spread in the human population. Other common autosomal recessive diseases such as sickle-cell anemia have been found to protect carriers from other diseases, an evolutionary trade-off known as heterozygote advantage. Resistance to the following have all been proposed as possible sources of heterozygote advantage:
- Cholera: With the discovery that cholera toxin requires normal host CFTR proteins to function properly, it was hypothesized that carriers of mutant "CFTR" genes benefited from resistance to cholera and other causes of diarrhea. Further studies have not confirmed this hypothesis.
- Typhoid: Normal CFTR proteins are also essential for the entry of "Salmonella" Typhi into cells, suggesting that carriers of mutant "CFTR" genes might be resistant to typhoid fever. No "in vivo" study has yet confirmed this. In both cases, the low level of cystic fibrosis outside of Europe, in places where both cholera and typhoid fever are endemic, is not immediately explicable.
- Diarrhea: The prevalence of CF in Europe might be connected with the development of cattle domestication. In this hypothesis, carriers of a single mutant "CFTR" had some protection from diarrhea caused by lactose intolerance, prior to the appearance of the mutations that created lactose tolerance.
- Tuberculosis: Another possible explanation is that carriers of the gene could have some resistance to TB. This hypothesis is based on the thesis that "CFTR" gene mutation carriers have insufficient action in one of their enzymes – arylsulphatase - which is necessary for "Mycobacterium tuberculosis" virulence. As "M. tuberculosis" would use its host’s sources to affect the individual, and due to the lack of enzyme it could not presents its virulence, being a carrier of "CFTR "mutation could provide resistance against tuberculosis.
Cystic fibrosis is the most common life-limiting autosomal recessive disease among people of European heritage. In the United States, about 30,000 individuals have CF; most are diagnosed by six months of age. In Canada, about 4,000 people have CF. Around 1 in 25 people of European descent, and one in 30 of Caucasian Americans, is a carrier of a CF mutation. Although CF is less common in these groups, roughly one in 46 Hispanics, one in 65 Africans, and one in 90 Asians carry at least one abnormal "CFTR" gene. Ireland has the world's highest prevalence of CF, at one in 1353.
Although technically a rare disease, CF is ranked as one of the most widespread life-shortening genetic diseases. It is most common among nations in the Western world. An exception is Finland, where only one in 80 people carries a CF mutation. The World Health Organization states, "In the European Union, one in 2000–3000 newborns is found to be affected by CF". In the United States, one in 3,500 children is born with CF. In 1997, about one in 3,300 Caucasian children in the United States was born with CF. In contrast, only one in 15,000 African American children suffered from it, and in Asian Americans, the rate was even lower at one in 32,000.
Cystic fibrosis is diagnosed in males and females equally. For reasons that remain unclear, data have shown that males tend to have a longer life expectancy than females, but recent studies suggest this gender gap may no longer exist perhaps due to improvements in health care facilities, while a recent study from Ireland identified a link between the female hormone estrogen and worse outcomes in CF.
The distribution of CF alleles varies among populations. The frequency of ΔF508 carriers has been estimated at one in 200 in northern Sweden, one in 143 in Lithuanians, and one in 38 in Denmark. No ΔF508 carriers were found among 171 Finns and 151 Saami people. ΔF508 does occur in Finland, but it is a minority allele there. CF is known to occur in only 20 families (pedigrees) in Finland.