Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is estimated that 7% of women in the western world develop palpable breast cysts.
There is preliminary evidence that women with breast cysts may be at an increased risk of breast cancer, especially at younger ages.
In males, the occurrence of breast cysts is rare and may (but need not) be an indication of malignancy.
Breast cancer risk is elevated for defined fraction of lesions. Except for patients with a strong family history of breast cancer, where the risk is two-fold, nonproliferative lesions have no increased risk. Proliferative lesions also have approximately a 2-fold risk. In particular, atypical hyperplasia is associated with an increased risk of developing breast cancer. Atypical lobular hyperplasia is associated with the greatest risk, approximately 5-fold and especially high relative risk of developing premenopausal breast cancer. Atypical ductal hyperplasia is associated with 2.4-fold risk. In contrast, a New England Journal of Medicine article states that for women with a strong familial history of breast cancer, the risk of future breast cancer is roughly doubled, independent of histological status. The article further states "The relative risk of breast cancer for the cohort was 1.56 (95 percent confidence interval, 1.45 to 1.68), and this increased risk persisted for at least 25 years after biopsy. The relative risk associated with atypia was 4.24 (95 percent confidence interval, 3.26 to 5.41), as compared with a relative risk of 1.88 (95 percent confidence interval, 1.66 to 2.12) for proliferative changes without atypia and of 1.27 (95 percent confidence interval, 1.15 to 1.41) for nonproliferative lesions. The strength of the family history of breast cancer, available for 4808 women, was a risk factor that was independent of histologic findings. No increased risk was found among women with no family history and nonproliferative findings. In the first 10 years after the initial biopsy, an excess of cancers occurred in the same breast, especially in women with atypia."
It is not well understood whether the lesions are precursors of breast cancer or only indication of increased risk, for most types of lesions the chance of developing breast cancer is nearly the same in the affected and unaffected breast (side) indicating only coincidence of risk factors. For atypical lobular hyperplasia there is high incidence of ipsilateral breast cancers indicating a possible direct carcinogenetic link.
It occurs in all adult age groups. While the majority of patients are between 40 and 59 years old, age predilection is much less pronounced than in noninflammatory breast cancer. The overall rate is 1.3 cases per 100000, black women (1.6) have the highest rate, Asian and Pacific Islander women the lowest (0.7) rates.
Most known breast cancer risk predictors do not apply for inflammatory breast cancer. It may be slightly associated with cumulative breast-feeding duration.
Smoking tobacco appears to increase the risk of breast cancer, with the greater the amount smoked and the earlier in life that smoking began, the higher the risk. In those who are long-term smokers, the risk is increased 35% to 50%. A lack of physical activity has been linked to about 10% of cases. Sitting regularly for prolonged periods is associated with higher mortality from breast cancer. The risk is not negated by regular exercise, though it is lowered.
There is an association between use of hormonal birth control and the development of premenopausal breast cancer, but whether oral contraceptives use may actually cause premenopausal breast cancer is a matter of debate. If there is indeed a link, the absolute effect is small. Additionally, it is not clear if the association exists with newer hormonal birth controls. In those with mutations in the breast cancer susceptibility genes "BRCA1" or "BRCA2", or who have a family history of breast cancer, use of modern oral contraceptives does not appear to affect the risk of breast cancer.
The association between breast feeding and breast cancer has not been clearly determined; some studies have found support for an association while others have not. In the 1980s, the abortion–breast cancer hypothesis posited that induced abortion increased the risk of developing breast cancer. This hypothesis was the subject of extensive scientific inquiry, which concluded that neither miscarriages nor abortions are associated with a heightened risk for breast cancer.
A number of dietary factors have been linked to the risk for breast cancer. Dietary factors which may increase risk include a high fat diet, high alcohol intake, and obesity-related high cholesterol levels. Dietary iodine deficiency may also play a role. Evidence for fiber is unclear. A 2015 review found that studies trying to link fiber intake with breast cancer produced mixed results. In 2016 a tentative association between low fiber intake during adolescence and breast cancer was observed.
Other risk factors include radiation and shift-work. A number of chemicals have also been linked, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents Although the radiation from mammography is a low dose, it is estimated that yearly screening from 40 to 80 years of age will cause approximately 225 cases of fatal breast cancer per million women screened.
Compared to other diseases or other cancers, breast cancer receives a proportionately greater share of resources and attention. In 2001 MP Ian Gibson, chairman of the House of Commons of the United Kingdom all party group on cancer stated "The treatment has been skewed by the lobbying, there is no doubt about that. Breast cancer sufferers get better treatment in terms of bed spaces, facilities and doctors and nurses." Breast cancer also receives significantly more media coverage than other, equally prevalent cancers, with a study by Prostate Coalition showing 2.6 breast cancer stories for each one covering cancer of the prostate. Ultimately there is a concern that favoring sufferers of breast cancer with disproportionate funding and research on their behalf may well be costing lives elsewhere. Partly because of its relatively high prevalence and long-term survival rates, research is biased towards breast cancer. Some subjects, such as cancer-related fatigue, have been studied little except in women with breast cancer.
One result of breast cancer's high visibility is that statistical results can sometimes be misinterpreted, such as the claim that one in eight women will be diagnosed with breast cancer during their lives—a claim that depends on the unrealistic assumption that no woman will die of any other disease before the age of 95. This obscures the reality, which is that about ten times as many women will die from heart disease or stroke than from breast cancer.
The emphasis on breast cancer screening may be harming women by subjecting them to unnecessary radiation, biopsies, and surgery. One-third of diagnosed breast cancers might recede on their own. Screening mammography efficiently finds non-life-threatening, asymptomatic breast cancers and pre-cancers, even while overlooking serious cancers. According to H. Gilbert Welch of the Dartmouth Institute for Health Policy and Clinical Practice, research on screening mammography has taken the "brain-dead approach that says the best test is the one that finds the most cancers" rather than the one that finds dangerous cancers.
Among women worldwide, breast cancer is the most common cause of cancer death. Breast self-examination (BSE) is an easy but unreliable method for finding possible breast cancer. Factors that appear to be implicated in decreasing the risk of, early diagnosis of. or recurrence of breast cancer are regular breast examinations by health care professionals, regular mammograms, self-examination of breasts, healthy diet, and exercise to decrease excess body fat.
The development of breast cysts may be prevented to some degree, according to the majority of the specialists. The recommended measures one is able to take in order to avoid the formation of the cysts include practicing good health and avoiding certain medications, eating a balanced diet, taking necessary vitamins and supplements, getting exercise, and avoiding stress.
Although caffeine consumption does not have a scientifically proved connection with the process of cyst development, many women claim that their symptoms are relieved if avoiding it. Some doctors recommend reducing the amount of caffeine in one's diet in terms of both beverages and foods (such as chocolate). Also reducing salt intake may help in alleviating the symptoms of breast cysts, although, again, there is no scientific linkage between these two. Excessive sugar consumption as well as undetected food allergies, such as to gluten or lactose, may also contribute to cyst development.
Studies suggest that drinking alcohol during pregnancy may affect the likelihood of breast cancer in daughters. "For women who are pregnant, ingestion of alcohol, even in moderation, may lead to elevated circulating oestradiol levels, either through a reduction of melatonin or some other mechanism. This may then affect the developing mammary tissue such that the lifetime risk of breast cancer is raised in their daughters."
In some population studies moderate alcohol consumption is associated with increase the breast cancer risk.
In contrast, research by the Danish National Institute for Public Health, comprising 13,074 women aged 20 to 91 years, found that moderate drinking had virtually no effect on breast cancer risk.
Studies that control for screening incidence show no association with moderate drinking and breast cancer, e.g.. Moderate drinkers tend to screen more which results in more diagnoses of breast cancer, including mis-diagnoses. A recent study of 23 years of breast cancer screening in the Netherlands concluded that 50% of diagnoses were over-diagnoses.
These may be caused among others by trauma, secretory stasis/milk engorgement, hormonal stimulation, infections or autoimmune reactions.
Repeated occurrence unrelated to lactation requires endocrinological examination.
- bacterial mastitis
- mastitis from milk engorgement or secretory stasis
- mastitis or mumps
- chronic subareolar abscess
- tuberculosis of the breast
- syphilis of the breast
- retromammary abscess
- actinomycosis of the breast
- duct ectasia syndrome
- breast engorgement
There are usually no adverse side effects to this condition. In almost all cases it subsides after menopause. A possible complication arises through the fact that cancerous tumors may be more difficult to detect in women with fibrocystic changes.
About one percent of breast cancer develops in males. It is estimated that about 2,140 new cases are diagnosed annually in the United States (US) and about 300 in the United Kingdom (UK). The number of annual deaths in the US is about 440 (for 2016 "but fairly stable over the last 30 years"). In a study from India, eight out of 1,200 (0.7%) male cancer diagnoses in a pathology review represented breast cancer. Incidence of male breast cancer has been increasing which raises the probability of other family members developing the disease. The relative risk of breast cancer for a female with an affected brother is approximately 30% higher than for a female with an affected sister. The tumor can occur over a wide age range, but typically appears in males in their sixties and seventies.
Known risk factors include radiation exposure, exposure to female hormones (estrogen), and genetic factors. High estrogen exposure may occur by medications, obesity, or liver disease, and genetic links include a high prevalence of female breast cancer in close relatives. Chronic alcoholism has been linked to male breast cancer. The highest risk for male breast cancer is carried by males with Klinefelter syndrome. Male BRCA mutation carriers are thought to be at higher risk for breast cancer as well, with roughly 10% of male breast cancer cases carrying BRCA2 mutations, and BRCA1 mutation being in the minority.
Mastitis typically develops when the milk is not properly removed from the breast. Milk stasis can lead to the milk ducts in the breasts becoming blocked, as the breast milk is not being properly and regularly expressed. It has also been suggested that blocked milk ducts can occur as a result of pressure on the breast, such as tight-fitting clothing or an over-restrictive bra, although there is sparse evidence for this supposition.
Mastitis may occur when the baby is not appropriately attached to the breast while feeding, when the baby has infrequent feeds or has problems suckling the milk out of the breast.
The presence of cracks or sores on the nipples increases the likelihood of infection. Tight clothing or ill-fitting bras may also cause problems as they compress the breasts. There is a possibility that infants carrying infectious pathogens in their noses can infect their mothers; the clinical significance of this finding is still unknown.
Mastitis, as well as breast abscess, can also be caused by direct trauma to the breast. Such injury can occur for example during sports activities or due to seat belt injury.
Mastitis can also develop due to contamination of a breast implant or any other foreign body, for example after nipple piercing. In such cases, the removal of the foreign body is indicated.
Women who are breastfeeding are at risk for developing mastitis especially if they have sore or cracked nipples or have had mastitis before while breastfeeding another baby. Also, the chances of getting mastitis increases if women use only one position to breastfeed or wear a tight-fitting bra, which may restrict milk flow Difficulties in getting a nursing infant to latch on to the breast can also increase the risk for mastitis.
Women with diabetes, chronic illness, AIDS, or an impaired immune system may be more susceptible to the development of mastitis.
A breast hematoma may appear due to direct trauma to the breast, for example from a sports injury or a road accident, for example a vehicle collision in which a seat belt injury occurs.
Hematoma can also be a consequence of breast surgery, usually due to post-operative bleeding. Bleeding may occur shortly after the intervention or a number of days later and can occur for cosmetic surgery (for example breast reduction or breast enhancement) and for non-cosmetic surgery (for example lymph node removal, lumpectomy, or mastectomy). More rarely, hematoma can result from breast biopsy.
Rarely, a breast hematoma can also occur spontaneously due to a rupture of blood vessels in the breast, especially in persons with coagulopathy or after long-term use of blood-thinning drugs such as aspirin or ibuprofen.
Since the 1980s mastitis has often been divided into non-infectious and infectious sub-groups. However, recent research suggests that it may not be feasible to make divisions in this way. It has been shown that types and amounts of potentially pathogenic bacteria in breast milk are not correlated to the severity of symptoms. Moreover, although only 15% of women with mastitis in Kvist et al.'s study were given antibiotics, all recovered and few had recurring symptoms. Many healthy breastfeeding women wishing to donate breast milk have potentially pathogenic bacteria in their milk but have no symptoms of mastitis.
Small breast hematomas often resolve on their own within several days or weeks by means of reabsorption of the blood. Larger hematomas are more likely to lead to inflammation or fibrosis.
Breast hematomas can sometimes lead to skin discoloration, inflammation, or fever. When a hematoma resolves, it may become fibrotic, leaving behind scar tissue. A resolving hematoma may liquify to form a seroma.
Post-surgical breast hematomas can also impede wound healing and therefore impact the cosmetic outcome. Hematomas are furthermore one of the risk factors for breast surgical site infections. There is preliminary evidence that, after breast implant surgery, the presence of hematoma increases the risk of developing capsular contracture.
In mammography screening, scar tissue resulting from a breast hematoma can easily be confused with tumor tissue, especially in the first years following surgery. Ultimately, fat necrosis may occur in the concerned region of the breast.
Most patients diagnosed with Paget's disease of the nipple are over age 50, but rare cases have been diagnosed in patients in their 20s. The average age at diagnosis is 62 for women and 69 for men. The disease is rare among both women and men.
90% of cases are smokers, however only a very small fraction of smokers appear to develop this lesion. It has been speculated that either the direct toxic effect or hormonal changes related to smoking could cause squamous metaplasia of lactiferous ducts. It is not well established whether the lesion regresses after smoking cessation.
Extrapuerperal cases are often associated with hyperprolactinemia or with thyroid problems. Also diabetes mellitus may be a contributing factor in nonpuerperal breast abscess.
"Duct ectasia" in the literal sense (literally: duct widening) is a very common and thus rather unspecific finding, increasing with age. However, in the way in which the term is mostly used, duct ectasia is an inflammatory condition of the larger-order lactiferous ducts. It considered likely that the condition is associated with aseptic (chemical) inflammation related to the rupture of ducts or cysts. It is controversial whether duct dilation occurs first and leads to secretory stasis and subsequent periductal inflammation or whether inflammation occurs first and leads to an inflammatory weakening of the duct walls and then stasis. When the inflammation is complicated by necrosis and secondary bacterial infection, breast abscesses may form. Subareolar abscess, also called Zuska's disease (only nonpuerperal case), is a frequently aseptic inflammation and has been associated with squamous metaplasia of the lactiferous ducts.
The duct ectasia—periductal mastitis complex affects two groups of women: young women (in their late teens and early 20s) and perimenopausal women. Women in the younger group mostly have inverted nipples due to squamous metaplasia that lines the ducts more extensively compared to other women and produces keratin plugs which in turn lead to duct obstruction and then duct dilation, secretory stasis, inflammation, infection and abscess. This is not typically the case for women in the older group; in this group, there is likely a multifactorial etiology involving the balance in estrogen, progesterone and prolactin.
Treatment of mastitis and/or abscess in nonlactating women largely the same as that of lactational mastitis, generally involving antibiotics treatment, possibly surgical intervention by means of fine-needle aspiration and/or incision and drainage and/or interventions on the lactiferous ducts (for details, "see also" the articles on treatment of mastitis, of breast abscess and of subareolar abscess). Additionally, an investigation for possible malignancy is needed, normally by means of mammography, and a pathological investigation such as a biopsy may be necessary to exclude malignant mastitis. Although no "causal" relation with breast cancer has been established, there appears to be an increased statistical risk of breast cancer, warranting a long-term surveillance of patients diagnosed with non-puerperal mastitis.
Nonpuerperal breast abscesses have a higher rate of recurrence compared to puerperal breast abscesses. There is a high statistical correlation of nonpuerperal breast abscess with diabetes mellitus (DM). On this basis, it has recently been suggested that diabetes screening should be performed on patients with such abscess.
Age distribution and relation to breastfeeding duration is suggestive of some sort of involvement of hormones in the aetiology, however significant differences exist compared to normal breast cancer.
Typically IBC shows low levels of estrogen and progesterone receptor sensitivity, corresponding with poor outcome. In cases with positive estrogen receptor status antihormonal treatment is believed to improve outcome.
Paradoxically some findings suggest that especially aggressive phenotypes of IBC are characterised by high level of NF kappaB target gene expression which can be - under laboratory conditions - successfully modulated by estrogen, but not by tamoxifen.
The presence of three factors for the prognosis has been suggested, whether there is a palpable mass of the disease, whether lymph nodes are positive and whether there is an underlying malignant cancer.
If there is none of these, the five- and 10-year survival is 85% and 80% respectively, with adjuvant chemotherapy even 95% and 90%. If there is a palpable mass, it is 32% and 31% respectively, with adjuvant chemotherapy (40% and 35%).
Positive lymph-nodes have been positively associated with a palpable mass and affect the prognosis to be now just 28% survival after 10 years (vs 79% without palpable mass and without affected lymph-nodes). Involvement of the lymph nodes does not directly cause any harm, but is merely an indicator of systemic spread.
Furthermore, patients with an identifiable associated underlying breast tumor have a survival rate of 38-40% at five years and a survival rate of 22-33% at 10 years. The death rate of metastatic breast carcinoma in patients with mammary Paget's disease and underlying cancer is 61.3%, with a 10-year cumulative survival rate of 33%.
Some women who have pain in one or both breasts may fear breast cancer. However, breast pain is not a common symptom of cancer. The great majority of breast cancer cases do not present with symptoms of pain, though breast pain in older women is more likely to be associated with cancer.
Two percent of women will have a Bartholin's gland cyst at some point in their lives. They occur at a rate of 0.55 per 1000 person-years and in women aged 35–50 years at a rate of 1.21 per 1000 person-years. The incidence of Bartholin duct cysts increases with age until menopause, and decreases thereafter. Hispanic women may be more often affected than white women and black women. The risk of developing a Bartholin's gland cyst increases with the number of childbirths.
Adjusted for age and stage the prognosis for breast cancer in males is similar to that in females. Prognostically favorable are smaller tumor size and absence or paucity of local lymph node involvement. Hormonal treatment may be associated with hot flashes and impotence.
Triple-negative breast cancer accounts for approximately 15%-25% of all breast cancer cases. The overall proportion of TNBC is very similar in all age groups. Younger women have a higher rate of basal or BRCA related TNBC while older women have a higher proportion of apocrine, normal-like and rare subtypes including neuroendocrine TNBC.
Among younger women, African American and Hispanic women have a higher risk of TNBC, with African Americans facing worse prognosis than other ethnic groups.
In 2009, a case-control study of 187 triple-negative breast cancer patients described a 2.5 increased risk for triple-negative breast cancer in women who used oral contraceptives (OCs) for more than one year compared to women who used OCs for less than one year or never. The increased risk for triple-negative breast cancer was 4.2 among women 40 years of age or younger who used OCs for more than one year, while there was no increased risk for women between the ages of 41 and 45. Also, as duration of OC use increased, triple-negative breast cancer risk increased.