Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A defect in the UGT1A1-gene, also linked to Crigler–Najjar syndrome and Gilbert's syndrome, is responsible for the congenital form of Lucey–Driscoll syndrome.
The common cause is congenital, but it can also be caused by maternal steroids passed on through breast milk to the newborn. It is different from breast feeding-associated jaundice (breast-fed infants have higher bilirubin levels than formula-fed ones).
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Neonatal jaundice may develop in the presence of sepsis, hypoxia, hypoglycemia, hypothyroidism, hypertrophic pyloric stenosis, galactosemia, fructosemia, etc.
Hyperbilirubinemia of the unconjugated type may be caused by:
- increased production
- hemolysis (e.g., hemolytic disease of the newborn, hereditary spherocytosis, sickle cell disease)
- ineffective erythropoiesis
- massive tissue necrosis or large hematomas
- decreased clearance
- drug-induced
- physiological neonatal jaundice and prematurity
- liver diseases such as advanced hepatitis or cirrhosis
- breast milk jaundice and Lucey–Driscoll syndrome
- Crigler–Najjar syndrome and Gilbert syndrome
In Crigler–Najjar syndrome and Gilbert syndrome, routine liver function tests are normal, and hepatic histology usually is normal, too. No evidence for hemolysis is seen. Drug-induced cases typically regress after discontinuation of the substance. Physiological neonatal jaundice may peak at 85–170 µmol/l and decline to normal adult concentrations within two weeks. Prematurity results in higher levels.
Very little is known about outcomes in DG after early childhood. This is because many infants with DG are born in states where they are not diagnosed by NBS, and of those who are diagnosed, most are discharged from metabolic follow-up as toddlers.
Because it is unclear whether DG has any long-term developmental impacts, or if diet modification would prevent or resolve any issues that may result from DG, any developmental or psychosocial problems experienced by a person with DG should be treated symptomatically and the possibility of other causes should be explored.
Of note, premature ovarian insufficiency, a common outcome among girls and women with classic galactosemia, has been checked by hormone studies and does not appear to occur at high prevalence among girls with DG.
Prior Research Concerning Developmental Outcomes of Children with DG: Three
studies of developmental outcomes of children with DG have been published.
- The first looked at biochemical markers and developmental outcomes in a group of 28 toddlers and young children with DG, some of whom had drunk milk through infancy and some of whom had drunk soy formula. The authors found that galactose metabolites were significantly elevated in the infants drinking milk over those drinking soy. However, all of the children scored within normal limits on standardized tests of child development.
- A second study of developmental outcomes in DG looked at 3 to 10 year olds living in a large metropolitan area and asked whether children diagnosed as newborns with DG in this group were more likely than their unaffected peers to receive special educational services later in childhood. The answer was yes. Specifically, children with DG in this group were significantly more likely than other children to receive a diagnosis of, or special educational services for, a speech/language disorder.
- The final study reported that addressed developmental outcomes in DG was a pilot study involving direct assessments of 15 children, all ages 6–11 years old; 15 had DG and 5 did not. Children in the DG group showed slower auditory processing than did the control group. The DG group also showed some slight differences in auditory memory, receptive language/ listening skills, social-emotional functioning, and balance and fine motor coordination.
Combined,
these studies "suggest" that school age
children with DG "might" be at
increased risk for specific developmental difficulties compared with controls. All
of the relevant studies were limited, however, leaving the question of whether
children with DG are truly at increased risk for developmental difficulties
unresolved. Current reports also leave open the question of whether dietary
exposure to milk in infancy associates with developmental outcomes in DG. More
research is needed to answer these questions.
The prevalence of DG in the United States (US) can only be estimated because there is no true population surveillance for this condition. Differences in NBS methods result in very different detection rates for DG in different states. For example, in some US states, DG is detected by NBS in up to 1 in 3500 infants screened, while in other states it is essentially not detected. DG prevalence in the US Caucasian population is estimated to be approximately 1 in 4,000, which is nearly 10 times the prevalence of classic galactosemia.
Acrodermatitis enteropathica is an autosomal recessive metabolic disorder affecting the uptake of zinc through the inner lining of the bowel, the mucous membrane. It is characterized by inflammation of the skin (dermatitis) around bodily openings (periorificial) and the tips of fingers and toes (acral), hair loss (alopecia), and diarrhea. It can also be related to deficiency of zinc due to other, ie. congenital causes.
Other names for "acrodermatitis enteropathica" include Brandt syndrome and Danbolt–Closs syndrome.
Acrodermatitis enteropathica, in terms of genetics, indicates that a mutation of the SLC39A4 gene on chromosome 8 q24.3 is responsible for the disorder.The SLC39A4 gene encodes a transmembrane protein that serves as a zinc uptake protein. The features of the disease usually start manifesting as an infant is weaned from breast milk. Zinc is very important as it is involved in the function of approximately 100 enzymes in the human body.
Galactosemia (British galactosaemia) is a rare genetic metabolic disorder that affects an individual's ability to metabolize the sugar galactose properly. Galactosemia follows an autosomal recessive mode of inheritance that confers a deficiency in an enzyme responsible for adequate galactose degradation.
Friedrich Goppert (1870–1927), a German physician, first described the disease in 1917, with its cause as a defect in galactose metabolism being identified by a group led by Herman Kalckar in 1956.
Its incidence is about 1 per 60,000 births for people of European ancestry. In other populations the incidence rate differs. Galactosaemia is about one hundred times more common (1:480 births) within the Irish Traveller population.
Premature thelarche is a rare medical condition that is characterized by isolated breast development (thelarche being the onset of breast development) at a very early age with no other signs of sexual maturation. It generally occurs within the first 1 to 4 years of life, with a peak incidence of 2 years of age, and tends to resolve within 1 to 2 years without treatment. The condition never advances beyond Tanner stage III breast development.
Premature thelarche is distinct from neonatal breast hyperplasia (see also witch's milk), which is common in the first few months of life and is due to acute exposure to high levels of sex hormones like estrogen during pregnancy. Premature thelarche is also distinct from precocious puberty, which generally occurs later in childhood and also includes development of other pubertal characteristics.
Treatment with fennel ("Foeniculum vulgare") has been associated with premature thelarche in several case reports. Estradiol levels were found to be elevated by 15–20 times for the ages of the afflicted girls (5 months to 5 years). Also, fennel is known to contain anethole, an estrogenic compound.
The most common causes of nipple inversion include:
- Born with condition
- Trauma which can be caused by conditions such as fat necrosis, scars or it may be a result of surgery
- Breast sagging, drooping or ptosis
- Breast cancer
- breast carcinoma
- Paget's disease
- Inflammatory Breast Cancer (IBC)
- Breast infections or inflammations
- mammary duct ectasia
- breast abscess
- mastitis
- Genetic variant of nipple shape such as
- Weaver syndrome
- congenital disorder of glycosylation type 1A & 1 L
- Kennerknecht-Sorgo-Oberhoffer syndrome
- Gynecomastia
- Holoprosencephaly, recurrent infections and monocytosis
- Tuberculosis
Around 10–20% of all women are born with this condition. Most common nipple variations that women are born with are caused by short ducts or a wide areola muscle sphincter.
Inverted nipples can also occur after sudden and major weight loss.
Those infants that have an increased risk of developing hypoglycemia shortly after birth are:
- preterm
- asphyxia
- cold stress
- congestive heart failure
- sepsis
- Rh disease
- discordant twin
- erythroblastosis fetalis
- polycythemia
- microphallus or midline defect
- respiratory disease
- maternal glucose IV
- maternal epidural
- postmaturity
- hyperinssulinnemia
- endocrine disorders
- inborn errors of metabolism
- diabetic mother
- maternal toxemia
- intrapartum fever
The only treatment for classic galactosemia is eliminating lactose and galactose from the diet. Even with an early diagnosis and a restricted diet, however, some individuals with galactosemia experience long-term complications such as speech difficulties, learning disabilities, neurological impairment (e.g. tremors, etc.), and ovarian failure. Symptoms have not been associated with Duarte galactosemia, and many individuals with Duarte galactosemia do not need to restrict their diet at all. However, research corroborates a previously overlooked theory that Duarte galactosemia may lead to language developmental issues in children with no clinical symptoms. Infants with classic galactosemia cannot be breast-fed due to lactose in human breast milk and are usually fed a soy-based formula.
Galactosemia is sometimes confused with lactose intolerance, but galactosemia is a more serious condition. Lactose intolerant individuals have an acquired or inherited shortage of the enzyme lactase, and experience abdominal pains after ingesting dairy products, but no long-term effects. In contrast, a galactosemic individual who consumes galactose can cause permanent damage to their bodies.
Long term complication of galactosemia includes:
- Speech deficits
- Ataxia
- Dysmetria
- Diminished bone density
- Premature ovarian failure
- Cataract
The disease causes an increased risk of bleeding. The most common sites of bleeding are the umbilicus, mucous membranes, gastrointestinal tract, circumcision and venepunctures.
Newborns are relatively vitamin K deficient for a variety of reasons. They have low vitamin K stores at birth, vitamin K passes the placenta poorly, the levels of vitamin K in breast milk are low and the gut flora has not yet been developed (vitamin K is normally produced by intestinal bacteria).
Typical recovery from NEC if medical, non-surgical treatment succeeds, includes 10–14 days or more without oral intake and then demonstrated ability to resume feedings and gain weight. Recovery from NEC alone may be compromised by co-morbid conditions that frequently accompany prematurity. Long-term complications of medical NEC include bowel obstruction and anemia.
In the United States it caused 355 deaths per 100,000 live births in 2013, down from 484 per 100,000 live births in 2009. Rates of death were almost three times higher for the black populations than for the white populations.
Overall, about 70-80% of infants who develop NEC survive. Medical management of NEC shows an increased chance of survival compared to surgical management. Despite a significant mortality risk, long-term prognosis for infants undergoing NEC surgery is improving, with survival rates of 70–80%. "Surgical NEC" survivors are at risk for complications including short bowel syndrome and neurodevelopmental disability.
A supernumerary nipple (also known as a third nipple, triple nipple, accessory nipple, polythelia or the related condition: polymastia) is an additional nipple occurring in mammals, including humans. Often mistaken for moles, supernumerary nipples are diagnosed in humans at a rate of approximately 1 in 18 people.
The nipples appear along the two vertical "milk lines," which start in the armpit on each side, run down through the typical nipples and end at the groin. They are classified into eight levels of completeness from a simple patch of hair to a milk-bearing breast in miniature.
"Polythelia" refers to the presence of an additional nipple alone while "polymastia" denotes the much rarer presence of additional mammary glands.
Although usually presenting on the milk line, pseudomamma can appear as far away as the foot.
A possible relationship with mitral valve prolapse has been proposed.
A study performed at Strong Memorial Hospital in Rochester, New York, showed that infants ≤ 60 days old meeting the following criteria were at low-risk for having a serious bacterial illness:
- generally well-appearing
- previously healthy
- full term (at ≥37 weeks gestation)
- no antibiotics perinatally
- no unexplained hyperbilirubinemia that required treatment
- no antibiotics since discharge
- no hospitalizations
- no chronic illness
- discharged at the same time or before the mother
- no evidence of skin, soft tissue, bone, joint, or ear infection
- White blood cells (WBCs) count 5,000-15,000/mm
- absolute band count ≤ 1,500/mm
- urine WBC count ≤ 10 per high power field (hpf)
- stool WBC count ≤ 5 per high power field (hpf) "only in infants with diarrhea"
Those meeting these criteria likely do not require a lumbar puncture, and are felt to be safe for discharge home without antibiotic treatment, or with a single dose of intramuscular antibiotics, but will still require close outpatient follow-up.
One risk for Group B streptococcal infection (GBS) is Preterm rupture of membranes. Screening women for GBS (via vaginal and rectal swabbing) and treating culture positive women with intrapartum chemoprophylaxis is reducing the number of neonatal sepsis caused by GBS.
Women being treated for Hashimoto's disease can become pregnant. It is recommended that thyroid function be well-controlled before getting pregnant.
Untreated or poorly treated underactive thyroid can lead to problems for the mother, such as:
- Preeclampsia
- Anemia
- Miscarriage
- Placental abruption
- High cholesterol
- Postpartum bleeding
It also can cause serious problems for the baby, such as:
- Preterm birth
- Low birth weight
- Stillbirth
- Birth defects
- Thyroid problems
Some infants are treated with 40% dextrose (a form of sugar) gel applied directly to the infant's mouth.
"Breastfeeding jaundice" or "lack of breastfeeding jaundice," is caused by insufficient breast milk intake, resulting in inadequate quantities of bowel movements to remove bilirubin from the body. This leads to increased enterohepatic circulation, resulting in increased reabsorption of bilirubin from the intestines. Usually occurring in the first week of life, most cases can be ameliorated by frequent breastfeeding sessions of sufficient duration to stimulate adequate milk production.
Neonatal jaundice is a yellowish discoloration of the white part of the eyes and skin in a newborn baby due to high bilirubin levels. Other symptoms may include excess sleepiness or poor feeding. Complications may include seizures, cerebral palsy, or kernicterus.
In many cases there is no specific underlying disorder (physiologic). In other cases it results from red blood cell breakdown, liver disease, infection, hypothyroidism, or metabolic disorders (pathologic). A bilirubin level more than 34 μmol/l (2 mg/dL) may be visible. Concerns, in otherwise healthy babies, occur when levels are greater than 308 μmol/L (18 mg/dL), jaundice is noticed in the first day of life, there is a rapid rise in levels, jaundice lasts more than two weeks, or the baby appears unwell. In those with concerning findings further investigations to determine the underlying cause are recommended.
The need for treatment depends on bilirubin levels, the age of the child, and the underlying cause. Treatments may include more frequent feeding, phototherapy, or exchange transfusions. In those who are born early more aggressive treatment tends to be required. Physiologic jaundice generally lasts less than seven days. The condition affecting over half of babies in the first week of life. Of babies that are born early about 80% are affected.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
Ochronosis is a syndrome caused by the accumulation of homogentisic acid in connective tissues. It was first described by Rudolf Virchow in 1865. The condition was named after the yellowish (ocher-like) discoloration of the tissue seen on microscopic examination. However, macroscopically the affected tissues appear bluish grey because of a light-scattering phenomenon known as the Tyndall effect. The condition is most often associated with alkaptonuria but can occur from exogenous administration of phenol complexes like hydroquinone.
Once a child is born prematurely, thought must be given to decreasing the risk for developing NEC. Toward that aim, the methods of providing hyperalimentation and oral feeds are both important. In a 2012 policy statement, the American Academy of Pediatrics recommended feeding preterm infants human milk, finding "significant short- and long-term beneficial effects," including reducing the rate of NEC by a factor of two or more.
A study by researchers in Peoria, IL, published in "Pediatrics" in 2008, demonstrated that using a higher rate of lipid (fats and/or oils) infusion for very low birth weight infants in the first week of life resulted in zero infants developing NEC in the experimental group, compared with 14% with NEC in the control group. (They started the experimental group at 2 g/kg/d of 20% IVFE and increased within two days to 3 g/kg/d; amino acids were started at 3 g/kg/d and increased to 3.5.)
Neonatologists at the University of Iowa reported on the importance of providing small amounts of trophic oral feeds of human milk starting as soon as possible, while the infant is being primarily fed intravenously, in order to prime the immature gut to mature and become ready to receive greater oral intake. Human milk from a milk bank or donor can be used if mother's milk is unavailable. The gut mucosal cells do not get enough nourishment from arterial blood supply to stay healthy, especially in very premature infants, where the blood supply is limited due to immature development of the capillaries, so nutrients from the lumen of the gut are needed.
A Cochrane review published in April 2014 has established that supplementation of probiotics enterally "prevents severe NEC as well as all-cause mortality in preterm infants."
Increasing amounts of milk by 30 to 40 ml/kg is safe in infant who are born weighing very little. Not beginning feeding an infant by mouth for more than 4 days does not appear to have protective benefits.
Data from the NICHD Neonatal Research Network's Glutamine Trial showed that the incidence of NEC among extremely low birthweight (ELBW, <1000 g) infants fed with more than 98% human milk from their mothers was 1.3%, compared with 11.1% among infants fed only preterm formula, and 8.2% among infants fed a mixed diet, suggesting that infant deaths could be reduced by efforts to support production of milk by mothers of ELBW newborns.
Research from the University of California, San Diego found that higher levels of one specific human milk oligosaccharide, disialyllacto-N-tetraose, may be protective against the development of NEC.