Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Brainstem glioma is an aggressive and dangerous cancer. Without treatment, the life expectancy is typically a few months from the time of diagnosis. With appropriate treatment, 37% survive more than one year, 20% survive 2 years. and 13% survive 3 years.This is not for all brainstem glioma, this statistic reflects DIPG. There are other brainstem gliomas.
Medulloblastomas affect just under two people per million per year, and affect children 10 times more than adults. Medulloblastoma is the second-most frequent brain tumor in children after pilocytic astrocytoma and the most common malignant brain tumor in children, comprising 14.5% of newly diagnosed cases. In adults, medulloblastoma is rare, comprising fewer than 2% of CNS malignancies.
The rate of new cases of childhood medulloblastoma is higher in males (62%) than females (38%), a feature which is not seen in adults. Medulloblastoma and other PNET`s are more prevalent in younger children than older children. About 40% of medulloblastoma patients are diagnosed before the age of five, 31% are between the ages of 5 and 9, 18.3% are between the ages of 10 and 14, and 12.7% are between the ages of 15 and 19.
For low-grade tumors, the prognosis is somewhat more optimistic. Patients diagnosed with a low-grade glioma are 17 times as likely to die as matched patients in the general population.
The age-standardized 10-year relative survival rate was 47%. One study reported that low-grade oligodendroglioma patients have a median survival of 11.6 years; another reported a median survival of 16.7 years.
The majority of patients can be expected to be cured of their disease and become long-term survivors of central neurocytoma. As with any other type of tumor, there is a chance for recurrence. The chance of recurrence is approximately 20%. Some factors that predict tumor recurrence and death due to progressive states of disease are high proliferative indices, early disease recurrence, and disseminated disease with or without the spread of disease through the cerebral spinal fluid. Long-term follow up examinations are essential for the evaluation of the outcomes that each treatment brings about. It is also essential to identify possible recurrence of CN. It is recommended that a cranial MRI is performed between every 6–12 months.
Epidemiological studies are required to determine risk factors. Aside from exposure to vinyl chloride or ionizing radiation, there are no known environmental factors associated with brain tumors. Mutations and deletions of so-called tumor suppressor genes, such as P53, are thought to be the cause of some forms of brain tumor. Inherited conditions, such as Von Hippel–Lindau disease, multiple endocrine neoplasia, and neurofibromatosis type 2 carry a high risk for the development of brain tumors. People with celiac disease have a slightly increased risk of developing brain tumors.
Although studies have not shown any link between cell phone or mobile phone radiation and the occurrence of brain tumors, the World Health Organization has classified mobile phone radiation on the IARC scale into Group 2B – possibly carcinogenic. Discounting claims that current cell phone usage may cause brain cancer, modern, third-generation (3G) phones emit, on average, about 1% of the energy emitted by the GSM (2G) phones that were in use when epidemiological studies that observed a slight increase in the risk for glioma – a malignant type of brain cancer – among heavy users of wireless and cordless telephones were conducted.
Brain, other CNS or intracranial tumors are the ninth most common cancer in the UK (around 10,600 people were diagnosed in 2013), and it is the eighth most common cause of cancer death (around 5,200 people died in 2012).
Gliomas are rarely curable. The prognosis for patients with high-grade gliomas is generally poor, and is especially so for older patients. Of 10,000 Americans diagnosed each year with malignant gliomas, about half are alive one year after diagnosis, and 25% after two years. Those with anaplastic astrocytoma survive about three years. Glioblastoma multiforme has a worse prognosis with less than a 12-month average survival after diagnosis, though this has extended to 14 months with more recent treatments.
The cumulative relative survival rate for all age groups and histology follow-up was 60%, 52%, and 47% at 5 years, 10 years, and 20 years, respectively. Patients diagnosed with a medulloblastoma or PNET are 50 times more likely to die than a matched member of the general population.
The most recent population-based (SEER) 5-year relative survival rates are 69% overall, but 72% in children (1–9 years) and 67% in adults (20+ years). The 20-year survival rate is 51% in children. Children and adults have different survival profiles, with adults faring worse than children only after the fourth year after diagnosis (after controlling for increased background mortality). Before the fourth year, survival probabilities are nearly identical. Longterm sequelae of standard treatment include hypothalamic-pituitary and thyroid dysfunction and intellectual impairment. The hormonal and intellectual deficits created by these therapies causes significant impairment of the survivors.
The causes of meningiomas are not well understood. Most cases are sporadic, appearing randomly, while some are familial. Persons who have undergone radiation, especially to the scalp, are more at risk for developing meningiomas, as are those who have had a brain injury. Atomic bomb survivors from Hiroshima had a higher than typical frequency of developing meningiomas, with the incidence increasing the closer that they were to the site of the explosion. Dental x-rays are correlated with an increased risk of meningioma, in particular for people who had frequent dental x-rays in the past, when the x-ray dose of a dental x-ray was higher than in the present.
Having excess body fat increases the risk.
A 2012 review found that mobile telephone use was unrelated to meningioma.
People with neurofibromatosis type 2 (NF-2) have a 50% chance of developing one or more meningiomas.
Ninety-two percent of meningiomas are benign. Eight percent are either atypical or malignant.
About 3 per 100,000 people develop the disease a year. It most often begins around 64 years of age and occurs more commonly in males than females. It is the second most common central nervous system cancer after meningioma.
Many individuals have meningiomas, but remain asymptomatic, so the meningiomas are discovered during an autopsy. One to two percent of all autopsies reveal meningiomas that were unknown to the individuals during their lifetime, since there were never any symptoms. In the 1970s, tumors causing symptoms were discovered in 2 out of 100,000 people, while tumors discovered without causing symptoms occurred in 5.7 out of 100,000, for a total incidence of 7.7/100,000. With the advent of modern sophisticated imaging systems such as CT scans, the discovery of asymptomatic meningiomas has tripled.
Meningiomas are more likely to appear in women than men, though when they appear in men, they are more likely to be malignant. Meningiomas may appear at any age, but most commonly are noticed in men and women age 50 or older, with meningiomas becoming more likely with age. They have been observed in all cultures, Western and Eastern, in roughly the same statistical frequency as other possible brain tumors.
The cause is still unknown. Researchers have not found any direct genetic link.
The term glioblastoma multiforme was introduced in 1926 by Percival Bailey and Harvey Cushing, based on the idea that the tumor originates from primitive precursors of glial cells (glioblasts), and the highly variable appearance due to the presence of necrosis, hemorrhage and cysts (multiform).
Papillary tumors of pineal region are extremely rare, constituting 0.4-1% of all central nervous system tumors. These tumors most commonly occur in adults with the mean age being 31.5. There have been cases reported for people between the ages 5 to 66 years. There is a slight predominance of females who have these tumors.
Central neurocytoma, abbreviated CNC, is an extremely rare, ordinarily benign intraventricular brain tumour that typically forms from the neuronal cells of the septum pellucidum. The majority of central neurocytomas grow inwards into the ventricular system forming interventricular neurocytomas. This leads to two primary symptoms of CNCs, blurred vision and increased intracranial pressure. Treatment for a central neurocytoma typically involves surgical removal, with an approximate 1 in 5 chance of recurrence. Central neurocytomas are classified as a grade II tumor under the World Health Organization's classification of tumors of the nervous system.
Treatment typically consists of radiotherapy and steroids for palliation of symptoms. Radiotherapy may result in minimally extended survival time. Prognosis is very poor, with only 37% of treated patients surviving one year or more. Topotecan has been studied in the treatment of brainstem glioma, otherwise, chemotherapy is probably ineffective, though further study is needed.
A brain stem tumor is a tumor in the part of the brain that connects to the spinal cord (the brain stem).
Because of the rarity of these tumors, there is still a lot of unknown information. There are many case studies that have been reported on patients who have been diagnosed with this specific type of tumor. Most of the above information comes from the findings resulting from case studies.
Since Papillary Tumors of the Pineal Region were first described in 2003, there have been seventy cases published in the English literature. Since there is such a small number of cases that have been reported, the treatment guidelines have not been established. A larger number of cases that contain a longer clinical follow-up are needed to optimize the management of patients with this rare disease.
Even though there is a general consensus on the morphology and the immunohistochemical characteristics that is required for the diagnosis, the histological grading criteria have yet to be fully defined and its biological behavior appears to be variable. This specific type of tumor appears to have a high potential for local recurrence with a high tumor bed recurrence rate during the five years after the initial surgery. This suggests the need for a tumor bed boost radiotherapy after surgical resection.
As stated above, the specific treatment guidelines have not yet been established, however, gross total resection of the tumor has been the only clinical factor associated overall and progression-free survival. The value of radiotherapy as well as chemotherapy on disease progression will need to be investigated in future trials. With this information, it will provide important insight into long-term management and may further our understanding of the histologic features of this tumor.
Malignant meningioma is a rare, fast-growing tumor that forms in one of the inner layers of the meninges (thin layers of tissue that cover and protect the brain and spinal cord). Malignant meningioma often spreads to other areas of the body.
The World Health Organization classification system defines both grade II and grade III meningiomas as malignant. Historically, histological subtypes have also been used in classification including:
- clear cell (WHO grade II),
- chordoid (WHO grade II),
- rhabdoid (WHO grade III), and
- papillary (WHO grade III)
Benign or low grade meningiomas (WHO grade I) include meningothelial, fibrous, transitional, psammomatous, angiomatous, microcystic, secretory, lymphoplasmacyte-rich, and metaplastic.
Perivascular epithelioid cell tumour, also known as PEComa or PEC tumour, is a family of mesenchymal tumours consisting of perivascular epithelioid cells (PECs). These are rare tumours that can occur in any part of the human body.
The cell type from which these tumours originate remains unknown. Normally, no perivascular epitheloid cells exist; the name refers to the characteristics of the tumour when examined under the microscope.
Establishing the malignant potential of these tumours remains challenging although criteria have been suggested; some PEComas display malignant features whereas others can cautiously be labeled as having 'uncertain malignant potential'. The most common tumours in the PEComa family are renal angiomyolipoma and pulmonary lymphangioleiomyomatosis, both of which are more common in patients with tuberous sclerosis complex. The genes responsible for this multi-system genetic disease have also been implicated in other PEComas.
Many PEComa types shows a female predominance in the sex ratio.
In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.
Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.
A hemangiopericytoma (HPC) is a type of soft tissue sarcoma that originates in the pericytes in the walls of capillaries. When inside the nervous system, although not strictly a meningioma tumor, it is a meningeal tumor with a special aggressive behavior. It was first characterized in 1942.
The precursor cell of PEComas is currently unknown; there is no normal counterpart "perivascular epitheloid cell". Genetically, PECs are linked to the tuberous sclerosis genes TSC1 and TSC2, although this link is stronger for angiomyolipoma and lymphangioleiomyomatosis than for other members of the PEComa family.
Depending on the grade of the sarcoma, it is treated with surgery, chemotherapy and/or radiotherapy.
A vestibular schwannoma (VS) is a benign primary intracranial tumor of the myelin-forming cells of the vestibulocochlear nerve (8th cranial nerve). A type of schwannoma, this tumor arises from the Schwann cells responsible for the myelin sheath that helps keep peripheral nerves insulated. Although it is also called an acoustic neuroma, this a misnomer for two reasons. First, the tumor usually arises from the vestibular division of the vestibulocochlear nerve, rather than the cochlear division. Second, it is derived from the Schwann cells of the associated nerve, rather than the actual neurons (neuromas).
Approximately 2,000 to 3,000 cases are diagnosed each year in the United States (6 to 9 per million persons). Comprehensive studies from Denmark published in 2012 showed an annual incidence of 19-23 per million from 2002 to 2008, over the last 30 years the reported incidence have been increasing, until the last decade in which an approximation of the true incidence may have been found. Most recent publications suggest that the incidence of vestibular schwannomas have been rising because of advances in MRI scanning.
Most cases are diagnosed in people between the ages of 30 and 60, and men and women appear to be affected equally. Most vestibular schwannomas occur spontaneously in those without a family history. One confirmed risk factor is a rare genetic mutation called NF2.
The primary symptoms of vestibular schwannoma are unexplained progressive unilateral hearing loss and tinnitus, and vestibular (disequilibrium) symptoms. Treatment of the condition is by surgery or radiation, and often results in substantial or complete hearing loss in the affected ear. Observation (non-treatment) over time also usually results in hearing loss in the affected ear.