Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diabetes mellitus increases the risk of stroke by 2 to 3 times. While intensive blood sugar control has been shown to reduce small blood vessel complications such as kidney damage and damage to the retina of the eye it has not been shown to reduce large blood vessel complications such as stroke.
There are various individual risk factors associated with having a silent stroke. Many of these risk factors are the same as those associated with having a major symptomatic stroke.
- Acrolein: elevated levels of acrolein, a toxic metabolite produced from the polyamines spermine, spermidine and by amine oxidase serve as a marker for silent stroke, when elevated in conjunction with C-reactive protein and interleukin 6 the confidence levels in predicting a silent stroke risk increase.
- Adiponectin: is a type of protein secreted by adipose cells that improves insulin sensitivity and possesses antiatherogenic properties. Lower levels of s-adiponectin are associated with ischemic stroke.
- Aging: the prevalence of silent stroke rises with increasing age with a prevalence rate of over twenty percent of the elderly increasing to 30%-40% in those over the age of 70.
- Anemia: children with acute anemia caused by medical conditions other than sickle cell anemia with hemoglobin below 5.5 g/dL. are at increased risk for having a silent stroke according to a study released at American Stroke Association's International Stroke Conference 2011. The researchers suggested a thorough examination for evidence of silent stroke in all severely anemic children in order to facilitate timely intervention to ameliorate the potential brain damage.
- Sickle cell anemia: is an autosomal recessive genetic blood disorder caused in the gene (HBB gene) which codes for hemoglobin (Hg) and results in lowered levels. The blood cells in sickle cell disease are abnormally shaped (sickle-shaped) and may form clots or block blood vessels. Estimates of children with sickle cell anemia who suffer strokes (with silent strokes predominating in the younger patients) range from 15%-30%. These children are at significant risk of cognitive impairment and poor educational outcomes.
- Thalassemia major: is an autosomal recessive genetically inherited form of hemolytic anemia, characterized by red blood cell (hemoglobin) production abnormalities. Children with this disorder are at increased risk for silent stroke.
- Atrial fibrillation (AF): atrial fibrillation (irregular heartbeat) is associated with a doubled risk for silent stroke.
- Cigarette smoking: The procoagulant and atherogenic effects of smoking increase the risk for silent stroke. Smoking also has a deleterious effect on regional cerebral blood flow (rCBF). The chances of having a stroke increase with the amount of cigarettes smoked and the length of time an individual has smoked (pack years).
- C-reactive protein (CRP) and Interleukin 6 (IL6): C-reactive protein is one of the plasma proteins known as acute phase proteins (proteins whose plasma concentrations increase (or decrease) by 25% or more during inflammatory disorders) which is produced by the liver. The level of CRP rises in response to inflammation in various parts of the body including vascular inflammation. The level of CRP can rise as high as 1000-fold in response to inflammation. Other conditions that can cause marked changes in CRP levels include infection, trauma, surgery, burns, inflammatory conditions, and advanced cancer. Moderate changes can also occur after strenuous exercise, heatstroke, and childbirth. Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test have a close correlation to increased risk of silent stroke. Interleukin-6 is an interleukin (type of protein) produced by T-cells (specialized white blood cells), macrophages and endothelial cells. IL6 is also classified as a cytokine (acts in relaying information between cells). IL6 is involved in the regulation of the acute phase response to injury and infection may act as both an anti-inflammatory agent and a pro-inflammatory.Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test and elevated levels of I6 as measured by an IL6 ELISA are markers for the increased risk of silent stroke.
- Diabetes mellitus: untreated or improperly managed diabetes mellitus is associated with an increased risk for silent stroke.
- Hypertension: which affects up to 50 million people in the United States alone is the major treatable risk factor associated with silent stokes.
- Homocysteine: elevated levels of total homocysteine (tHcy) an amino acid are an independent risk factor for silent stroke, even in healthy middle-aged adults.
- Metabolic syndrome (MetS):Metabolic syndrome is a name for a group of risk factors that occur together and increase the risk for coronary artery disease, stroke, and type 2 diabetes. A higher number of these MetS risk factors the greater the chance of having a silent sroke.
- Polycystic ovary syndrome (PCOS): is associated with double the risk for arterial disease including silent stroke independent of the subjects Body mass index (BMI).
- Sleep apnea: is a term which encompasses a heterogeneous group of sleep-related breathing disorders in which there is repeated intermittent episodes of breathing cessation or hypopnea, when breathing is shallower or slower than normal. Sleep apnea is a common finding in stroke patients but recent research suggests that it is even more prevalent in silent stroke and chronic microvascular changes in the brain. In the study presented at the American Stroke Association's International Stroke Conference 2012 the higher the apnea-hypopnea index, the more likely patients had a silent stroke.
Nutrition, specifically the Mediterranean-style diet, has the potential for decreasing the risk of having a stroke by more than half. It does not appear that lowering levels of homocysteine with folic acid affects the risk of stroke.
By definition, TIAs are transient, self-resolving, and do not cause permanent impairment. However, they are associated with an increased risk of subsequent ischemic strokes, which can be permanently disabling. Therefore, management centers around the prevention of future ischemic strokes and addressing any modifiable risk factors. The optimal regimen depends on the underlying cause of the TIA.
Although there is a lack of robust studies demonstrating the efficacy of lifestyle changes in preventing TIA, many medical professionals recommend them. These include:
- Avoiding smoking
- Cutting down on fats to help reduce the amount of plaque build up
- Eating a healthy diet including plenty of fruits and vegetables
- Limiting sodium in the diet, thereby reducing blood pressure
- Exercising regularly
- Moderating intake of alcohol, stimulants, sympathomimetics, etc.
- Maintaining a healthy weight
In addition, it is important to control any underlying medical conditions that may increase the risk of stroke or TIA, including:
- Hypertension
- High cholesterol
- Diabetes mellitus
- Atrial fibrillation
Therapeutic hypothermia has been attempted to improve results post brain ischemia . This procedure was suggested to be beneficial based on its effects post cardiac arrest. Evidence supporting the use of therapeutic hypothermia after brain ischemia, however, is limited.
A closely related disease to brain ischemia is brain hypoxia. Brain hypoxia is the condition in which there is a decrease in the oxygen supply to the brain even in the presence of adequate blood flow. If hypoxia lasts for long periods of time, coma, seizures, and even brain death may occur. Symptoms of brain hypoxia are similar to ischemia and include inattentiveness, poor judgment, memory loss, and a decrease in motor coordination. Potential causes of brain hypoxia are suffocation, carbon monoxide poisoning, severe anemia, and use of drugs such as cocaine and other amphetamines. Other causes associated with brain hypoxia include drowning, strangling, choking, cardiac arrest, head trauma, and complications during general anesthesia. Treatment strategies for brain hypoxia vary depending on the original cause of injury, primary and/or secondary.
Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality.
Major risk factors for cerebral infarction are generally the same as for atherosclerosis: high blood pressure, Diabetes mellitus, tobacco smoking, obesity, and dyslipidemia. The American Heart Association/American Stroke Association (AHA/ASA) recommends controlling these risk factors in order to prevent stroke. The AHA/ASA guidelines also provide information on how to prevent stroke if someone has more specific concerns, such as Sickle-cell disease or pregnancy. It is also possible to calculate the risk of stroke in the next decade based on information gathered through the Framingham Heart Study.
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison their healthy counterparts.
Sickle cell anemia may cause brain ischemia associated with the irregularly shaped blood cells. Sickle shaped blood cells clot more easily than normal blood cells, impeding blood flow to the brain.
Compression of blood vessels may also lead to brain ischemia, by blocking the arteries that carry oxygen to the brain. Tumors are one cause of blood vessel compression.
Ventricular tachycardia represents a series of irregular heartbeats that may cause the heart to completely shut down resulting in cessation of oxygen flow. Further, irregular heartbeats may result in formation of blood clots, thus leading to oxygen deprivation to all organs.
Blockage of arteries due to plaque buildup may also result in ischemia. Even a small amount of plaque build up can result in the narrowing of passageways, causing that area to become more prone to blood clots. Large blood clots can also cause ischemia by blocking blood flow.
A heart attack can also cause brain ischemia due to the correlation that exists between heart attack and low blood pressure. Extremely low blood pressure usually represents the inadequate oxygenation of tissues. Untreated heart attacks may slow blood flow enough that blood may start to clot and prevent the flow of blood to the brain or other major organs. Extremely low blood pressure can also result from drug overdose and reactions to drugs. Therefore, brain ischemia can result from events other than heart attacks.
Congenital heart defects may also cause brain ischemia due to the lack of appropriate artery formation and connection. People with congenital heart defects may also be prone to blood clots.
Other events that may result in brain ischemia include cardiorespiratory arrest, stroke, and severe irreversible brain damage.
Recently, Moyamoya disease has also been identified as a potential cause for brain ischemia. Moyamoya disease is an extremely rare cerebrovascular condition that limits blood circulation to the brain, consequently leading to oxygen deprivation.
Prognostics factors:
Lower Glasgow coma scale score, higher pulse rate, higher respiratory rate and lower arterial oxygen saturation level is prognostic features of in-hospital mortality rate in acute ischemic stroke.
Acquired cerebrovascular diseases are those that are obtained throughout a person's life that may be preventable by controlling risk factors. The incidence of cerebrovascular disease increases as an individual ages. Causes of acquired cerebrovascular disease include atherosclerosis, embolism, aneurysms, and arterial dissections. Atherosclerosis leads to narrowing of blood vessels and less perfusion to the brain, and it also increases the risk of thrombosis, or a blockage of an artery, within the brain. Major modifiable risk factors for atherosclerosis include:
Controlling these risk factors can reduce the incidence of atherosclerosis and stroke. Atrial fibrillation is also a major risk factor for strokes. Atrial fibrillation causes blood clots to form within the heart, which may travel to the arteries within the brain and cause an embolism. The embolism prevents blood flow to the brain, which leads to a stroke.
An aneurysm is an abnormal bulging of small sections of arteries, which increases the risk of artery rupture. Intracranial aneurysms are a leading cause of subarachnoid hemorrhage, or bleeding around the brain within the subarachnoid space. There are various hereditary disorders associated with intracranial aneurysms, such as Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, and familial hyperaldosteronism type I. However, individuals without these disorders may also obtain aneurysms. The American Heart Association and American Stroke Association recommend controlling modifiable risk factors including smoking and hypertension.
Arterial dissections are tears of the internal lining of arteries, often associated with trauma. Dissections within the carotid arteries or vertebral arteries may compromise blood flow to the brain due to thrombosis, and dissections increase the risk of vessel rupture.
It is estimated that lacunar infarcts account for 25% of all ischemic strokes, with an annual incidence of approximately 15 per 100,000 people. They may be more frequent in men and in people of African, Mexican, and Hong Kong Chinese descent.
Whether a cerebral infarction is thrombotic or embolic based, its pathophysiology, or the observed conditions and underlying mechanisms of the disease. In thrombotic ischemic stroke, a thrombus forms and blocks blood flow. A thrombus forms when the endothelium is activated by a variety of signals to result in platelet aggregation in the artery. This clump of platelets interacts with fibrin to form a platelet plug. This platelet plug grows into a thrombus, resulting in a stenotic artery. Thrombotic ischemia can occur in large or small blood vessels. In large vessels, the most common causes of thrombi are atherosclerosis and vasoconstriction. In small vessels, the most common cause is lipohyalinosis. Lipohyalinosis is when high blood pressure and aging causes a build-up of fatty hyaline matter in blood vessels. Atheroma formation can also cause small vessel thrombotic ischemic stroke.
An embolic stroke refers to the blockage of an artery by an embolus, a traveling particle or debris in the arterial bloodstream originating elsewhere. An embolus is most frequently a thrombus, but it can also be a number of other substances including fat (e.g. from bone marrow in a broken bone), air, cancer cells or clumps of bacteria (usually from infectious endocarditis). The embolus may be of cardiac origin due to Atrial fibrillation, Patent foramen ovale or from atherosclerotic plaque of another (or the same) large artery. Cerebral artery gas embolism (e.g. during ascent from a SCUBA dive) is also a possible cause of infarction (Levvett & Millar, 2008)
Nontraumatic intraparenchymal hemorrhage most commonly results from hypertensive damage to blood vessel walls e.g.:
- hypertension
- eclampsia
- drug abuse,
but it also may be due to autoregulatory dysfunction with excessive cerebral blood flow e.g.:
- reperfusion injury
- hemorrhagic transformation
- cold exposure
- rupture of an aneurysm or arteriovenous malformation (AVM)
- arteriopathy (e.g. cerebral amyloid angiopathy, moyamoya)
- altered hemostasis (e.g. thrombolysis, anticoagulation, bleeding diathesis)
- hemorrhagic necrosis (e.g. tumor, infection)
- venous outflow obstruction (e.g. cerebral venous sinus thrombosis).
Nonpenetrating and penetrating cranial trauma can also be common causes of intracerebral hemorrhage.
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
Typically, tissue plasminogen activator may be administered within three to four-and-a-half hours of stroke onset if the patient is without contraindications (i.e. a bleeding diathesis such as recent major surgery or cancer with brain metastases). High dose aspirin can be given within 48 hours. For long term prevention of recurrence, medical regimens are typically aimed towards correcting the underlying risk factors for lacunar infarcts such as hypertension, diabetes mellitus and cigarette smoking. Anticoagulants such as heparin and warfarin have shown no benefit over aspirin with regards to five year survival.
Patients who suffer lacunar strokes have a greater chance of surviving beyond thirty days (96%) than those with other types of stroke (85%), and better survival beyond a year (87% versus 65-70%). Between 70% and 80% are functionally independent at 1 year, compared with fewer than 50% otherwise.
Occupational Therapy and Physical Therapy interventions are used in the rehabilitation of lacunar stroke. A physiotherapy program will improve joint range of motion of the paretic limb using passive range of motion exercises. When increases in activity are tolerated, and stability improvements are made, patients will progress from rolling to side-lying, to standing (with progressions to prone, quadruped, bridging, long-sitting and kneeling for example) and learn to transfer safely (from their bed to a chair or from a wheel chair to a car for example). Assistance and ambulation aids are used as required as the patient begins walking and lessened as function increases. Furthermore, splints and braces can be used to support limbs and joints to prevent complications such as contractures and spasticity. The rehabilitation healthcare team should also educate the patient and their family on common stroke symptoms and how to manage an onset of stroke. Continuing follow-up with a physician is essential so that the physician may monitor medication dosage and risk factors.
Once considered uncommon, spontaneous carotid artery dissection is an increasingly recognised cause of stroke that preferentially affects the middle-aged.
The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have been reported to be 2.6 to 2.9 per 100,000.
Observational studies and case reports published since the early 1980s show that patients with spontaneous internal carotid artery dissection may also have a history of stroke in their family and/or hereditary connective tissue disorders, such as Marfan syndrome, Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, pseudoxanthoma elasticum, fibromuscular dysplasia, and osteogenesis imperfecta type I. IgG4-related disease involving the carotid artery has also been observed as a cause.
However, although an association with connective tissue disorders does exist, most people with spontaneous arterial dissections do not have associated connective tissue disorders. Also, the reports on the prevalence of hereditary connective tissue diseases in people with spontaneous dissections are highly variable, ranging from 0% to 0.6% in one study to 5% to 18% in another study.
Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the elongated styloid process causes symptoms).
In younger patients, vascular malformations, specifically AVMs and cavernous angiomas are more common causes for hemorrhage. In addition, venous malformations are associated with hemorrhage.
In the elderly population, amyloid angiopathy is associated with cerebral infarcts as well as hemorrhage in superficial locations, rather than deep white matter or basal ganglia. These are usually described as "lobar". These bleedings are not associated with systemic amyloidosis.
Hemorrhagic neoplasms are more complex, heterogeneous bleeds often with associated edema. These hemorrhages are related to tumor necrosis, vascular invasion and neovascularity. Glioblastomas are the most common primary malignancies to hemorrhage while thyroid, renal cell carcinoma, melanoma, and lung cancer are the most common causes of hemorrhage from metastatic disease.
Other causes of intraparenchymal hemorrhage include hemorrhagic transformation of infarction which is usually in a classic vascular distribution and is seen in approximately 24 to 48 hours following the ischemic event. This hemorrhage rarely extends into the ventricular system.
Cerebral hypoxia is a form of hypoxia (reduced supply of oxygen), specifically involving the brain; when the brain is completely deprived of oxygen, it is called "cerebral anoxia". There are four categories of cerebral hypoxia; they are, in order of severity: diffuse cerebral hypoxia (DCH), focal cerebral ischemia, cerebral infarction, and global cerebral ischemia. Prolonged hypoxia induces neuronal cell death via apoptosis, resulting in a hypoxic brain injury.
Cases of total oxygen deprivation are termed "anoxia", which can be hypoxic in origin (reduced oxygen availability) or ischemic in origin (oxygen deprivation due to a disruption in blood flow). Brain injury as a result of oxygen deprivation either due to hypoxic or anoxic mechanisms are generally termed hypoxic/anoxic injuries (HAI). Hypoxic ischemic encephalopathy (HIE) is a condition that occurs when the entire brain is deprived of an adequate oxygen supply, but the deprivation is not total. While HIE is associated in most cases with oxygen deprivation in the neonate due to birth asphyxia, it can occur in all age groups, and is often a complication of cardiac arrest.
Risk factors for thromboembolism, the major cause of arterial embolism, include disturbed blood flow (such as in atrial fibrillation and mitral stenosis), injury or damage to an artery wall, and hypercoagulability (such as increased platelet count). Mitral stenosis poses a high risk of forming emboli which may travel to the brain and cause stroke. Endocarditis increases the risk for thromboembolism, by a mixture of the factors above.
Atherosclerosis in the aorta and other large blood vessels is a common risk factor, both for thromboembolism and cholesterol embolism. The legs and feet are major impact sites for these types. Thus, risk factors for atherosclerosis are risk factors for arterial embolisation as well:
- advanced age
- cigarette smoking
- hypertension (high blood pressure)
- obesity
- hyperlipidemia, e.g. hypercholesterolemia, hypertriglyceridemia, elevated lipoprotein (a) or apolipoprotein B, or decreased levels of HDL cholesterol)
- diabetes mellitus
- Sedentary lifestyle
- stress
Other important risk factors for arterial embolism include:
- recent surgery (both for thromboembolism and air embolism)
- previous stroke or cardiovascular disease
- a history of long-term intravenous therapy (for air embolism)
- Bone fracture (for fat embolism)
A septal defect of the heart makes it possible for paradoxical embolization, which happens when a clot in a vein enters the right side of the heart and passes through a hole into the left side. The clot can then move to an artery and cause arterial embolisation.
In 2004 the first adequately large scale study on the natural history and long-term prognosis of this condition was reported; this showed that at 16 months follow-up 57.1% of patients had full recovery, 29.5%/2.9%/2.2% had respectively minor/moderate/severe symptoms or impairments, and 8.3% had died. Severe impairment or death were more likely in those aged over 37 years, male, affected by coma, mental status disorder, intracerebral hemorrhage, thrombosis of the deep cerebral venous system, central nervous system infection and cancer. A subsequent systematic review of nineteen studies in 2006 showed that mortality is about 5.6% during hospitalisation and 9.4% in total, while of the survivors 88% make a total or near-total recovery. After several months, two thirds of the cases has resolution ("recanalisation") of the clot. The rate of recurrence was low (2.8%).
In children with CVST the risk of death is high. Poor outcome is more likely if a child with CVST develops seizures or has evidence of venous infarction on imaging.
There is varying evidence about the importance of saturated fat in the development of myocardial infarctions. Eating polyunsaturated fat instead of saturated fats has been shown in studies to be associated with a decreased risk of myocardial infarction, while other studies find little evidence that reducing dietary saturated fat or increasing polyunsaturated fat intake affects heart attack risk. Dietary cholesterol does not appear to have a significant effect on blood cholesterol and thus recommendations about its consumption may not be needed. Trans fats do appear to increase risk. Acute and prolonged intake of high quantities of alcoholic drinks (3–4 or more) increases the risk of a heart attack.
Ischemia: A decreased or restriction of circulating blood flow to a region of the brain which deprives neurons of the necessary substrates (primarily glucose); represents 80% of all strokes. A thrombus or embolus plugs an artery so there is a reduction or cessation of blood flow. This hypoxia or anoxia leads to neuronal injury, which is known as a stroke. The death of neurons leads to a so-called softening of the cerebrum in the affected area.
Hemorrhage: Intracerebral hemorrhage occurs in deep penetrating vessels and disrupts the connecting pathways, causing a localized pressure injury and in turn injury to brain tissue in the affected area. Hemorrhaging can occur in instances of embolic ischemia, in which the previously obstructed region spontaneously restores blood flow. This is known as a hemorrhagic infarction and a resulting red infarct occurs, which points to a type of cerebral softening known as red softening.
After return of heart function, there has been a moderately higher risk of death in the hospital when compared to MI patients without PVF. Whether this still holds true with the recent changes in treatment strategies of earlier hospital admission and immediate angioplasty with thrombus removal is unknown. PVF does not affect the long-term prognosis.
Cerebral hypoxia can be caused by any event that severely interferes with the brain's ability to receive or process oxygen. This event may be internal or external to the body. Mild and moderate forms of cerebral hypoxia may be caused by various diseases that interfere with breathing and blood oxygenation. Severe asthma and various sorts of anemia can cause some degree of diffuse cerebral hypoxia. Other causes include status epilepticus, work in nitrogen-rich environments, ascent from a deep-water dive, flying at high altitudes in an unpressurized cabin without supplemental oxygen, and intense exercise at high altitudes prior to acclimatization.
Severe cerebral hypoxia and anoxia is usually caused by traumatic events such as choking, drowning, strangulation, smoke inhalation, drug overdoses, crushing of the trachea, status asthmaticus, and shock. It is also recreationally self-induced in the fainting game and in erotic asphyxiation.
- Transient ischemic attack (TIA), is often referred to as a "mini-stroke". The American Heart Association and American Stroke Association (AHA/ASA) refined the definition of transient ischemic attack. TIA is now defined as a transient episode of neurologic dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The symptoms of a TIA can resolve within a few minutes, unlike a stroke. TIAs share the same underlying etiology as strokes; a disruption of cerebral blood flow. TIAs and strokes present with the same symptoms such as contralateral paralysis (opposite side of body from affected brain hemisphere), or sudden weakness or numbness. A TIA may cause sudden dimming or loss of vision, aphasia, slurred speech, and mental confusion. The symptoms of a TIA typically resolve within 24 hours, unlike a stroke. Brain injury may still occur in a TIA lasting only a few minutes. Having a TIA is a risk factor for eventually having a stroke.
- Silent stroke is a stroke which does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. Despite its lack of identifiable symptoms, a silent stroke still causes brain damage and places the patient at increased risk for a major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as fMRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being predisposing factors.