Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 1994 community-based study indicated that two out of every 100,000 people suffered from SCSFLS, while a 2004 emergency room-based study indicated five per 100,000. SCSFLS generally affects the young and middle aged; the average age for onset is 42.3 years, but onset can range from ages 22 to 61. In an 11-year study women were found to be twice as likely to be affected as men.
Studies have shown that SCSFLS runs in families and it is suspected that genetic similarity in families includes weakness in the dura mater, which leads to SCSFLS. Large scale population-based studies have not yet been conducted. While a majority of SCSFLS cases continue to be undiagnosed or misdiagnosed, an actual increase in occurrence is unlikely.
Final outcomes for people with SCSFLS remain poorly studied. Symptoms may resolve in as little as two weeks, or persist for months. Less commonly, patients may suffer from unremitting symptoms for many years. People with chronic SCSFLS may be disabled and unable to work. Recurrent CSF leak at an alternate site after recent repair is common.
Brain herniation is a potentially deadly side effect of very high pressure within the skull that occurs when a part of the brain is squeezed across structures within the skull. The brain can shift across such structures as the falx cerebri, the tentorium cerebelli, and even through the foramen magnum (the hole in the base of the skull through which the spinal cord connects with the brain). Herniation can be caused by a number of factors that cause a mass effect and increase intracranial pressure (ICP): these include traumatic brain injury, intracranial hemorrhage, or brain tumor.
Herniation can also occur in the absence of high ICP when mass lesions such as hematomas occur at the borders of brain compartments. In such cases local pressure is increased at the place where the herniation occurs, but this pressure is not transmitted to the rest of the brain, and therefore does not register as an increase in ICP.
Because herniation puts extreme pressure on parts of the brain and thereby cuts off the blood supply to various parts of the brain, it is often fatal. Therefore, extreme measures are taken in hospital settings to prevent the condition by reducing intracranial pressure, or decompressing (draining) a hematoma which is putting local pressure on a part of the brain.
Treatment involves removal of the etiologic mass and decompressive craniectomy. Brain herniation can cause severe disability or death. In fact, when herniation is visible on a CT scan, the prognosis for a meaningful recovery of neurological function is poor. The patient may become paralyzed on the same side as the lesion causing the pressure, or damage to parts of the brain caused by herniation may cause paralysis on the side opposite the lesion. Damage to the midbrain, which contains the reticular activating network which regulates consciousness, will result in coma. Damage to the cardio-respiratory centers in the medulla oblongata will cause respiratory arrest and (secondarily) cardiac arrest. Current investigation is underway regarding the use of neuroprotective agents during the prolonged post-traumatic period of brain hypersensitivity associated with the syndrome.
Many cases resolve within 1–2 weeks of controlling blood pressure and eliminating the inciting factor. However some cases may persist with permanent neurologic impairment in the form of visual changes and seizures among others. Though uncommon, death may occur with progressive swelling of the brain (cerebral edema), compression of the brainstem, increased intracranial pressure, or a bleed in the brain (intracerebral hemorrhage). PRES may recur in about 5-10% of cases; this occurs more commonly in cases precipitated by hypertension as opposed to other factors (medications, etc.).
The number cases of PRES that occur each year is not known. It may be somewhat more common in females.
Arachnoid cysts are seen in up to 1.1% of the population with a gender distribution of 2:1 male:female Only 20% of these have symptoms, usually from secondary hydrocephalus.
A study that looked at 2,536 healthy young males found a prevalence of 1.7% (95% CI 1.2 to 2.3%). Only a small percentage of the detected abnormalities require urgent medical attention.
Vascular myelopathy (vascular disease of the spinal cord) refers to an abnormality of the spinal cord in regard to its blood supply. The blood supply is complicated and supplied by two major vessel groups: the posterior spinal arteries and the anterior spinal arteries—of which the Artery of Adamkiewicz is the largest. Both the posterior and anterior spinal arteries run the entire length of the spinal cord and receive anastomotic (conjoined) vessels in many places. The anterior spinal artery has a less efficient supply of blood and is therefore more susceptible to vascular disease. Whilst atherosclerosis of spinal arteries is rare, necrosis (death of tissue) in the anterior artery can be caused by disease in vessels originating from the segmental arteries such as atheroma (arterial wall swelling) or aortic dissection (a tear in the aorta).
Most arachnoid cysts are asymptomatic, and do not require treatment. Where complications are present, leaving arachnoid cysts untreated, may cause permanent severe neurological damage due to the progressive expansion of the cyst(s) or hemorrhage (bleeding). However, with treatment most individuals with symptomatic arachnoid cysts do well.
More specific prognoses are listed below:
- Patients with impaired preoperative cognition had postoperative improvement after surgical decompression of the cyst.
- Surgery can resolve psychiatric manifestations in selected cases.
Perioperative PION patients have a higher prevalence of cardiovascular risk factors than in the general population. Documented cardiovascular risks in people affected by perioperative PION include high blood pressure, diabetes mellitus, high levels of cholesterol in the blood, tobacco use, abnormal heart rhythms, stroke, and obesity. Men are also noted to be at higher risk, which is in accordance with the trend, as men are at higher risk of cardiovascular disease. These cardiovascular risks all interfere with adequate blood flow, and also may suggest a contributory role of defective vascular autoregulation.
Anterior spinal artery syndrome is necrosis of tissue in the anterior spinal artery or its branches. It is characterised by pain which radiates at onset and sudden quadraplegia (paralysis of all four limbs) or paraplegia (paralysis of the lower body). Within days, flaccid limbs become spastic and hyporeflexia (underactive nerve responses) turns into hyperreflexia (overactive nerve responses) and extensor plantar nerve responses. Sensory loss to pain and temperature also occurs up to the level of damage on the spinal cord, as damage to different areas will affect different parts of the body.
In diagnosis, other causes of abrupt paralysis should be excluded such as cord compression, transverse myelitis (inflammation of the spinal cord) and Guillain–Barré syndrome. A specific cause of the infarction should be looked for, such as diabetes, polyarteritis nodosa (inflammatory damage of vessels) or systemic lupus erythematosus. Neurosyphilis is also a known cause. Other causes include:
Treatment is supportive and aims to relieve symptoms. The prognosis is dependent upon individual circumstances and factors.
Umbilical cord compression may be relieved by the mother switching to another position. In persistent severe signs of fetal distress, Cesarean section may be needed.
Cerebral edema can result from brain trauma or from nontraumatic causes such as ischemic stroke, cancer, or brain inflammation due to meningitis or encephalitis.
Vasogenic edema caused by amyloid-modifying treatments, such as monoclonal antibodies, is known as ARIA-E (amyloid-related imaging abnormalities edema).
The blood–brain barrier (BBB) or the blood–cerebrospinal fluid (CSF) barrier may break down, allowing fluid to accumulate in the brain's extracellular space.
Altered metabolism may cause brain cells to retain water, and dilution of the blood plasma may cause excess water to move into brain cells.
Fast travel to high altitude without proper acclimatization can cause high-altitude cerebral edema (HACE).
Epidural hematoma is when bleeding occurs between the tough outer membrane covering the brain and the skull. Often there is loss of consciousness following a head injury, a brief regaining of consciousness, and then loss of consciousness again. Other symptoms may include headache, confusion, vomiting, and an inability to move parts of the body. Complications may include seizures.
The cause is typically head injury that results in a break of the temporal bone and bleeding from the middle meningeal artery. Occasionally it can occur as a result of a bleeding disorder or blood vessel malformation. Diagnosis is typically by a CT scan or MRI. When this condition occurs in the spine it is known as a spinal epidural hematoma.
Treatment in generally by urgent surgery in the form of a craniotomy or burr hole. Without treatment death typically results. The condition occurs in one to four percent of head injuries. Typically it occurs in young adults. Males are more often affected than females.
As illustrated by the risk factors above, perioperative hypoxia is a multifactorial problem. Amidst these risk factors it may be difficult to pinpoint the optic nerve’s threshold for cell death, and the exact contribution of each factor.
Low blood pressure and anemia are cited as perioperative complications in nearly all reports of PION, which suggests a causal relationship. However, while low blood pressure and anemia are relatively common in the perioperative setting, PION is exceedingly rare. Spine and cardiac bypass surgeries have the highest estimated incidences of PION, 0.028% and 0.018% respectively, and this is still extremely low. This evidence suggests that optic nerve injury in PION patients is caused by more than just anemia and low blood pressure.
Evidence suggests that the multifactorial origin of perioperative PION involves the risks discussed above and perhaps other unknown factors. Current review articles of PION propose that vascular autoregulatory dysfunction and anatomic variation are under-investigated subjects that may contribute to patient-specific susceptibility.
For individuals who survive the initial crush injury, survival rates are high for traumatic asphyxia.
The median survival time of patients without treatment is four to six weeks. The best prognosis are seen from NM due to breast cancer with the median overall survival of no more than six months after diagnosis of NM. Death are generally due to progressive neurological dysfunction. Treatment is meant to stabilize neurological function and prolong survival. Neurological dysfunction usually cannot be fixed but progressive dysfunction can be halted and survival may be increased to four to six months.
Factors that lower survival:
Much of prognosis can be determined from the damage due to primary cancer. Negative hormone receptor status, poor performance status, more than 3 chemotherapy regimes, and high Cyfra 21-1 level at diagnosis, all indicates lower survival period of patients with NM. Cyfra 21-1 is a fragment of the cytokeratin 19 and may reflect the tumor burden within the CSF.
Treatment approaches can include osmotherapy using mannitol, diuretics to decrease fluid volume, corticosteroids to suppress the immune system, hypertonic saline, and surgical decompression to allow the brain tissue room to swell without compressive injury.
Because the shunt systems are too expensive for most people in developing countries, such people often die without getting a shunt. Worse, the rate of revision in shunt systems adds to the cost of shunting many times. Looking at this point, a study compares shunt systems and highlights the role of low-cost shunt systems in most of the developing countries. It compares the Chhabra shunt system to shunt systems from developed countries.
Most commonly caused by hypertension, continued stress on the walls of the artery will degrade the vessel wall by damaging and loosening the collagen and elastin meshwork which comprises the intima. Similarly, hypercholesterolemia or hyperlipidemia can also provide sufficient trauma to the vessel wall resulting in dolichoectasia. As the arrangement of connective tissue is disturbed, the vessel wall is no longer able to hold its original conformation and begins to unravel due to the continued hypertension. High blood pressure mold and force the artery to now take on an elongated, tortuous course to better withstand the higher pressures.
Communicating hydrocephalus, also known as non-obstructive hydrocephalus, is caused by impaired cerebrospinal fluid reabsorption in the absence of any CSF-flow obstruction between the ventricles and subarachnoid space. It has been theorized that this is due to functional impairment of the arachnoidal granulations (also called arachnoid granulations or Pacchioni's granulations), which are located along the superior sagittal sinus and is the site of cerebrospinal fluid reabsorption back into the venous system. Various neurologic conditions may result in communicating hydrocephalus, including subarachnoid/intraventricular hemorrhage, meningitis and congenital absence of arachnoid villi. Scarring and fibrosis of the subarachnoid space following infectious, inflammatory, or hemorrhagic events can also prevent resorption of CSF, causing diffuse ventricular dilatation.
Dexamethasone (a potent glucocorticoid) in doses of 16 mg/day may reduce edema around the lesion and protect the cord from injury. It may be given orally or intravenously for this indication.
Surgery is indicated in localised compression as long as there is some hope of regaining function. It is also occasionally indicated in patients with little hope of regaining function but with uncontrolled pain. Postoperative radiation is delivered within 2–3 weeks of surgical decompression. Emergency radiation therapy (usually 20 Gray in 5 fractions, 30 Gray in 10 fractions or 8 Gray in 1 fraction) is the mainstay of treatment for malignant spinal cord compression. It is very effective as pain control and local disease control. Some tumours are highly sensitive to chemotherapy (e.g. lymphomas, small-cell lung cancer) and may be treated with chemotherapy alone.
Once complete paralysis has been present for more than about 24 hours before treatment, the chances of useful recovery are greatly diminished, although slow recovery, sometimes months after radiotherapy, is well recognised.
The median survival of patients with metastatic spinal cord compression is about 12 weeks, reflecting the generally advanced nature of the underlying malignant disease.
On cardiotocography (CTG), umbilical cord compression can present with variable decelerations in fetal heart rate.
The prevalence of congenital Chiari I malformation, defined as tonsilar herniations of 3 to 5 mm or greater, was previously believed to be in the range of one per 1000 births, but is likely much higher. Women are three times more likely than men to have a congenital Chiari malformation. Type II malformations are more prevalent in people of Celtic descent. A study using upright MRI found cerebellar tonsillar ectopia in 23% of adults with headache from motor-vehicle-accident head trauma. Upright MRI was more than twice as sensitive as standard MRI, likely because gravity affects cerebellar position.
Cases of congenital Chiari malformation may be explained by evolutionary and genetic factors. Typically, an infant's brain weighs around 400g at birth and triples to 1100-1400g by age 11. At the same time the cranium triples in volume from 500 cm to 1500 cm to accommodate the growing brain. During human evolution, the skull underwent numerous changes to accommodate the growing brain. The evolutionary changes included increased size and shape of the skull, decreased basal angle and basicranial length. These modifications resulted in significant reduction of the size of the posterior fossa in modern humans. In normal adults, the posterior fossa comprises 27% of the total intracranial space, while in adults with Chiari Type I, it is only 21%. If a modern brain is paired with a less modern skull, the posterior fossa may be too small, so that the only place where the cerebellum can expand is the foramen magnum, leading to development of Chiari Type I. H. neanderthalensis had platycephalic (flattened) skull. Some cases of Chiari are associated with platybasia (flattening of the skull base).
In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.
Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.