Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
Biomechanical factors include fetal head constraint during pregnancy. It has been found by Jacob et al. that constraint inside the womb is associated with decreased expression of Indian Hedgehog protein and noggin. These last two are both important factors influencing bone development.
Following methods could serve as prevention: carrying the infant and tummy time.
Slight plagiocephaly is routinely diagnosed at birth and may be the result of a restrictive intrauterine environment giving a "diamond" shaped head when seen from above. If there is premature union of skull bones, this is more properly called craniosynostosis.
The incidence of plagiocephaly has increased dramatically since the advent of anti-Sudden Infant Death Syndrome recommendations for parents to keep their babies on their backs.
Data also suggest that the rates of plagiocephaly is higher among twins and multiple births, premature babies, babies who were positioned in the breech position or back-to-back, as well as babies born after a prolonged labour.
Brachycephaly (from Greek roots meaning "short" and "head") is the shape of a skull shorter than typical for its species. It is perceived as a desirable trait in some domesticated dog and cat breeds, such as pugs, and can be normal or abnormal in other animal species. In humans, the cephalic disorder is known as flat head syndrome, and results from premature fusion of the coronal sutures (see craniosynostosis) or from external deformation (see plagiocephaly). The coronal suture is the fibrous joint that unites the frontal bone with the two parietal bones of the skull. The parietal bones form the top and sides of the skull. This feature can be seen in Down syndrome.
In anthropology, human populations have been characterized as either dolichocephalic (long headed), mesaticephalic (moderate headed), or brachycephalic (short headed). The usefulness of the cephalic index was questioned by Giuseppe Sergi, who argued that cranial morphology provided a better means to model racial ancestry. The incidence of brachycephaly in people has increased since the advent of sudden infant death syndrome recommendations for parents to keep their babies on their backs. It is considered a cosmetic problem. Many pediatricians remain unaware of the issue and possible treatments. Treatments include regular prone repositioning of babies ("tummy time").
There are also cases of brachycephaly associated with plagiocephaly. Brachycephaly with plagiocephaly is positional and has become more prevalent since the "Back to Sleep" Campaign.The Back to Sleep campaign began in 1994 as a way to educate about ways to reduce the risk for sudden infant death syndrome (SIDS). The campaign was named for its recommendation to place healthy babies on their backs to sleep. Placing babies on their backs to sleep reduces the risk for SIDS, also known as "cot death" or "crib death." This campaign has been successful in promoting infant back sleeping and other risk-reduction strategies to parents, family members, child care providers, health professionals, and all other caregivers of infants, at a cost of increasing the incidence of this deformation of the head.
Brachycephaly also describes a developmentally normal type of skull with a high cephalic index, such as in snub-nosed breeds of dog such as pugs, Shih Tzus, and bulldogs or cats such as the Persian, Exotic and Himalayan.
Brachycephaly can be corrected with a cranial remolding orthoses (helmet) which provide painless total contact over the prominent areas of the skull and leave voids over the flattened areas to provide a pathway for more symmetrical skull growth. Treatment generally takes 3–4 months, but varies depending on the infant's age and severity of the cranial asymmetry.
However studies by scientists in the Netherlands have found there was no significant difference over time between infants treated with helmets and infants left untreated. All parents of infants treated with helmets confirmed negative side effects including skin irritation and sweating.
This study focused only on patients with mild to moderate cases, the participation rate was only 21%, and there was a 73% reporting of fitting issues, calling into question the validity of the study. Incorrectly fit devices cannot be expected to yield results. Additionally, independent published research that examined the effectiveness of helmet therapy conclude that as many as 95% of
patients demonstrate an improvement in head shape symmetry following helmet therapy, and the American Orthotics and Prosthetics Association (AOPA) has serious concerns about the relevance and validity of this study.
There are two less common types of McGillivray syndromes are: Metopic synostosis (trigonocephaly). The metopic suture runs from your baby's nose to the sagittal suture. Premature fusion gives the scalp a triangular appearance. Another one is Lambdoid synostosis (posterior plagiocephaly). This rare form of craniosynostosis involves the lambdoid suture, which runs across the skull near the back of the head. It may cause flattening of your baby's head on the affected side. A misshapen head doesn't always indicate craniosynostosis. For example, if the back of your baby's head appears flattened, it could be the result of birth trauma or your baby's spending too much time on his or her back. This condition is sometimes treated with a custom-fit helmet that helps mold your baby's head back into a normal position.
Your baby's skull has seven bones. Normally, these bones don't fuse until around age 2, giving your baby's brain time to grow. Joints called cranial sutures, made of strong, fibrous tissue, hold these bones together. In the front of your baby's skull, the sutures intersect in the large soft spot (fontanel) on the top of your baby's head. Normally, the sutures remain flexible until the bones fuse. The signs of craniosynostosis may not be noticeable at birth, but they become apparent during the first few months of your baby's life. The symptoms differs from types of synostosis. First of all there is Sagittal synostosis (scaphocephaly). Premature fusion of the suture at the top of the head (sagittal suture) forces the head to grow long and narrow, rather than wide. Scaphocephaly is the most common type of craniosynostosis. The other one is called Coronal synostosis (anterior plagiocephaly). Premature fusion of a coronal suture — one of the structures that run from each ear to the sagittal suture on top of the head — may force your baby's forehead to flatten on the affected side. It may also raise the eye socket and cause a deviated nose and slanted skull. The Bicoronal synostosis (brachycephaly). When both of the coronal sutures fuse prematurely, your baby may have a flat, elevated forehead and brow.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Prenatal diagnosis of Saethre-Chotzen Syndrome in high risk pregnancies is doable, but very uncommon and rarely performed. Furthermore, this is only possible if the mutation causing the disease has already been identified within the family genome. There are a few different techniques in which prenatal testing can be carried out. Prenatal testing is usually performed around 15–18 weeks, using amniocentesis to extract DNA from the fetus's cells. Prenatal testing can also be performed during weeks 10-12 using chorionic villus sampling (CVS) to extract DNA from the fetus. Recently, there has been an increased interest in utilizing ultrasound equipment in order to detect fetal skull abnormalities due to immature fusion of the cranial sutures.
Surgery is needed to prevent the closing of the coronal sutures from damaging brain development. In particular, surgeries for the LeFort III or monobloc midface distraction osteogenesis which detaches the midface or the entire upper face, respectively, from the rest of the skull, are performed in order to reposition them in the correct plane. These surgeries are performed by both plastic and oral and maxillofacial (OMS) surgeons, often in collaboration.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
Synostosis (plural: synostoses) is fusion of two bones. It can be normal in puberty, fusion of the epiphysis, or abnormal. When synostosis is abnormal it is a type of dysostosis.
Examples of synostoses include:
- craniosynostosis – an abnormal fusion of two or more cranial bones;
- radioulnar synostosis – the abnormal fusion of the radius and ulna bones of the forearm;
- tarsal coalition – a failure to separately form all seven bones of the tarsus (the hind part of the foot) resulting in an amalgamation of two bones; and
- syndactyly – the abnormal fusion of neighboring digits.
Synostosis within joints can cause ankylosis.
Crouzon syndrome is an autosomal dominant genetic disorder known as a branchial arch syndrome. Specifically, this syndrome affects the first branchial (or pharyngeal) arch, which is the precursor of the maxilla and mandible. Since the branchial arches are important developmental features in a growing embryo, disturbances in their development create lasting and widespread effects.
This syndrome is named after Octave Crouzon, a French physician who first described this disorder. He noted the affected patients were a mother and her daughter, implying a genetic basis. First called "craniofacial dysostosis", the disorder was characterized by a number of clinical features. This syndrome is caused by a mutation in the fibroblast growth factor receptor II, located on chromosome 10.
Breaking down the name, "craniofacial" refers to the skull and face, and "dysostosis" refers to malformation of bone.
Now known as Crouzon syndrome, the characteristics can be described by the rudimentary meanings of its former name. What occurs is that an infant's skull and facial bones, while in development, fuse early or are unable to expand. Thus, normal bone growth cannot occur. Fusion of different sutures leads to different patterns of growth of the skull.
Examples include: trigonocephaly (fusion of the metopic suture), brachycephaly (fusion of the coronal suture), dolichocephaly (fusion of the sagittal suture), plagiocephaly (unilateral premature closure of lambdoid and coronal sutures), oxycephaly (fusion of coronal and lambdoidal sutures), Kleeblattschaedel (premature closure of all sutures).
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
3C syndrome, also known as CCC dysplasia, Craniocerebellocardiac dysplasia or Ritscher–Schinzel syndrome, is a rare condition, whose symptoms include heart defects, cerebellar hypoplasia, and cranial dysmorphism. It was first described in the medical literature in 1987 by Ritscher and Schinzel, for whom the disorder is sometimes named.
Kaufman oculocerebrofacial syndrome is an autosomal recessive congenital disorder characterized by mental retardation, brachycephaly, upslanting palpebral fissures, eye abnormalities, and highly arched palate. It was characterized in 1971; eight cases had been identified as of 1995.
Baller–Gerold syndrome (BGS) is a rare genetic syndrome that involves premature fusion of the skull bones and malformations of facial, forearm and hand bones. The symptoms of Baller–Gerold syndrome overlap with features of a few other genetics disorders: Rothmund-Thomson syndrome and RAPADILINO syndrome. The prevalence of BGS is unknown, as there have only been a few reported cases, but it is estimated to be less than 1 in a million. The name Baller-Gerold comes from the researchers Baller and Gerold who discovered the first three cases.
Baller–Gerold syndrome is caused by a mutation in the RECQL4 gene found on chromosome 8p24. Molecular genetic tests used to identify mutations in the RECQL4 gene include targeted variant analysis and sequence analysis of the entire coding region of the gene. These methods look for changes in the sequence encoding RECQL4, as having a deleterious mutation in the gene will change the protein and disrupt its usual function. RECQL4 is a gene that encodes a DNA helicase in the RecQ helicase family. Helicases are involved with unwinding DNA in preparation for DNA replication and repair.
Baller–Gerold syndrome is inherited in an autosomal recessive pattern of inheritance, meaning that an affected child gets one mutant allele from each parent to produce the syndrome. A carrier is someone who has one mutant allele but does not does have any symptoms. If both parents are carriers, there is a 25% chance the child will have BGS. There is also a 50% chance the child will have one mutant copy (be a carrier) and be asymptomatic and a 25% chance the child will be asymptomatic and not a carrier. In order for someone to have BGS, they need to have two mutant copies of the gene. Adults may pursue genetic counselling to understand the syndrome, as well as the risks and choices regarding family planning.
There is no treatment for FTHS, though identification of TKS4 mutation as a causative factor may eventually provide new opportunities for neonatal screening in high-risk families.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
The cause of this condition is apparently due to mutation in the UBE3B gene and is inherited via autosomal recessive manner. This gene is located at molecular location- base pairs 109,477,410 to 109,543,628 and position 24.11 on chromosome 12.