Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The vast majority of cases are due to spontaneous genetic mutations.
It can be associated with mutations affecting the cohesin complex.
Multiple genes have been associated with the condition. In 2004, researchers at the Children's Hospital of Philadelphia (United States) and the University of Newcastle upon Tyne (England) identified a gene (NIPBL) on chromosome 5 that causes CdLS when it is mutated. Since then, additional genes have been found (SMC1A, SMC3 and HDAC8) that cause CdLS when changed. There are likely other genes as well. Researchers hope to gain a better understanding of why CdLS varies so widely from one individual to another and what can be done to improve the quality of life for people with the syndrome.
The latter two genes seem to correlate with a milder form of the syndrome.
In July 2012, the fourth “CdLS gene”—HDAC8—was announced. Many parents and professionals have
questions about this latest finding and what it means. HDAC8 is an X-linked gene, meaning it is located on the X chromosome. Individuals with CdLS who have the gene change in HDAC8 make up just a small portion of all people with CdLS.
Evidence of a linkage at chromosome 3q26.3 is mixed.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
The Cornelia de Lange Syndrome (CdLS) Foundation is a nonprofit, family support organization based in Avon, Connecticut, that exists to ensure early and accurate diagnosis of CdLS, promote research into the causes and manifestations of the syndrome, and help people with a diagnosis of CdLS, and others with similar characteristics, make informed decisions throughout their lives.
The incidence rate of ATR-16 syndrome is not easy to estimate and it is thought to be underdiagnosed. Scientists have described more than 20 cases as of 2013.
The estimated prevalence of Jacobsen syndrome is believed to be approximately 1 out of every 100,000 births. For reasons unknown females are twice as likely to have Jacobsen Syndrome than males. No preference for any race or ethnicity has been reported so far.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
Jacobsen Syndrome is caused due to deletion of genetic material from the long arm of chromosome 11. The size of deletion may vary across patients but the deletion always occurs at the end terminal of the q arm of chromosome 11. There are three ways in which the deletion could occur:
de novo deletion- this is a random event that occurred during the formation of the sperm or the egg or during the cell division in the embryonic stage, where genes from chromosome 11 get deleted.
Imbalanced translocation- in this case a parent with balanced translocation or other types of chromosomal rearrangement can pass on these genes to their children which further results in an imbalanced translocation. In this case the affected children have deletions on chromosome 11 as well as some extra genetic material from another chromosome.
Ring chromosome 11- in this case genetic material from both long and short arm of the chromosome get deleted and the remaining part joins together and forms a ring like structure. Here the affected person would have symptoms associated with both 11q and 11p deletion.
ATR-16 syndrome is caused by a deletion of part of chromosome 16, from p13.3 (a band on the short end of the chromosome) to the end of the chromosome. These can either be due to a balanced translocation or a de novo deletion. The genes affected include hemoglobin, alpha 1 (HBA1) and hemoglobin, alpha 2 (HBA2).
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Respiratory complications are often cause of death in early infancy.
Cri du chat syndrome, also known as chromosome 5p deletion syndrome, 5p− syndrome (pronounced "Five P Minus") or Lejeune’s syndrome, is a rare genetic disorder due to chromosome deletion on chromosome 5. Its name is a French term ("cat-cry" or "call of the cat") referring to the characteristic cat-like cry of affected children. It was first described by Jérôme Lejeune in 1963. The condition affects an estimated 1 in 50,000 live births across all ethnicities and is more common in females by a 4:3 ratio.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
The deletion that causes this disease can remove up to six different genes. These include:
- The uncharacterised protein C17orf69 (also known as FLJ25168).
- Corticotropin releasing hormone receptor 1 (CRHR1, also known as CRF-R, CRF1)
- Microtubule-associated protein tau (MAPT)
- The uncharacterised protein KIAA1267 (also known as DKFZP727C091)
The recurrent deletion is between 500-650 kilobases (Kb) in size encompassing at least six genes, among them the microtubule-associated protein tau (MAPT). A review of five patients found the parental chromosome from which the deletion originated carried a common 900kb inversion polymorphism. The orientation of low copy repeats flanking the deleted segment, suggests the inversion in the parental chromosome influences the deletion in the child's chromosome via a non-allelic homologous recombination (NAHR) mechanism.
This disorder affects all demographics equally. The two families that were studied are of European ancestry. Wilson–Turner syndrome is considered to be a rare disease because it affects one individual out of one million.
The duplication includes ~3.75 Mb between the distal and proximal ORDRs at either end of band 8p23.1. The copy number of the adjacent repeats may also be altered. The 8p23.1 duplication syndrome cannot be distinguished using conventional cytogenetics from high level copy number variation of the repeats themselves.
Both de novo cases and families with transmitted duplications from parents of both sex are known. The duplication is believed to arise de novo as a result of non-allelic homologous recombination (NAHR) between the proximal and distal ORDRs. NAHR is also thought to give rise to the reciprocal microdeletion syndrome, the polymorphic inversion between the ORDRs and a variety of other large scale abnormalities involving the short arm of chromosome 8.
Bohring–Opitz syndrome (BOS) is a medical syndrome caused by a mutation in the ASXL1 gene. It is diagnosed by genetic testing and is characterised by characteristic craniofacial appearance, fixed contractures of the upper limbs, abnormal posture, feeding difficulties, intellectual disability, small size at birth, and failure to thrive. Some of these features are shared with other genetic syndromes.
Genetically, de novo truncating mutations in ASXL1 have been shown to account for approximately 50% of Bohring–Opitz syndrome cases.
The syndrome is extremely rare, with fewer than 80 known cases worldwide. The leading cause of death is respiratory infections. Children with BOS can have feeding difficulties, recurring respiratory infections, sleep apnea, developmental delay, failure to thrive, abnormal hair density and length, Wilm’s Tumors, brain abnormalities, silent aspiration, and other issues.
22q13 deletion syndrome (spoken as "twenty-two q one three", see Locus (genetics)) is a genetic disorder caused by deletions or rearrangements on the q terminal end (long arm) of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. 22q13 deletion syndrome is often called Phelan-McDermid syndrome (abbreviated PMS). There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by "SHANK3" mutations, a definition that appears to exclude terminal deletions. The requirement to include "SHANK3" in the definition is supported by many, but not by those who first described 22q13 deletion syndrome.
A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small. The availability of DNA microarray technology for revealing multiple genetic problems simultaneously has been the diagnostic tool of choice. The falling cost for whole exome sequencing and, eventually, whole genome sequencing, may replace DNA microarray technology for candidate evaluation. However, fluorescence in situ hybridization (FISH) tests remain valuable for diagnosing cases of mosaicism (mosaic genetics) and chromosomal rearrangements (e.g., ring chromosome, unbalanced chromosomal translocation). Although early researchers sought a monogenic (single gene genetic disorder) explanation, recent studies have not supported that hypothesis (see Etiology, below).
Miller syndrome is a genetic condition also known as the Genee–Wiedemann syndrome, Wildervanck–Smith syndrome, or postaxial acrofacial dystosis. The incidence of this condition is not known, but it is considered extremely rare. It is due to a mutation in the DHODH gene. Nothing is known of its pathogenesis.
Screening methods are mostly done for females to determine if they are carriers. Males do not have to be tested because those with the disorder will show symptoms close to the time they are born because the disorder is inherited from the X chromosome. Female can be tested if they are carriers by performing a X chromosome inactivation analysis on DNA isolated from the peripheral lymphocytes. The CAG repeat in this section must be amplified and methylated DNA must be sorted from unmethylated DNA with PCR. Carrier females will show skewed X-inactivation pattern (skewing close to 100%) with the mutated allele inactivated. This indicates a selection against cells with an active X chromosome with the mutated HDAC8 gene.
The differential diagnosis includes Treacher Collins syndrome, Nager acrofacial dysostosis (preaxial cranial dysostosis). Other types of axial cranial dysostosis included the Kelly, Reynolds, Arens (Tel Aviv), Rodríguez (Madrid), Richieri-Costa and Patterson-Stevenson-Fontaine forms.
Wolf–Hirschhorn syndrome is a microdeletion syndrome caused by a deletion within HSA band 4p16.3 of the short arm of chromosome 4, particularly in the region of and . About 87% of cases represent a "de novo" deletion, while about 13% are inherited from a parent with a chromosome translocation. In the cases of familial translocation, there is a 2 to 1 excess of maternal transmission. Of the "de novo" cases, 80% are paternally derived. Severity of symptoms and expressed phenotype differ based on the amount of genetic material deleted. The critical region for determining the phenotype is at 4p16.3 and can often be detected through genetic testing and fluorescence in situ hybridization (FISH). Genetic testing and genetic counseling is offered to affected families.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
The phenotypic data on 11 patients indicated that cases are not always ascertained for CHD but that CHD was the most common single feature found in 6 out of 11 individuals. Developmental delay and/or learning difficulties were found in 5 out of 11 cases, but one prenatal case was developing normally at 15 months of age (Case 1,). Three other prenatal cases could not yet be reliably assessed. A variable degree of facial dysmorphism was present in 5 out of 11 individuals. Partial toe syndactyly has been found in one mother and son diad and adrenal anomalies in two probands but not in the duplicated mother of one of them. The phenotype is compatible with independent adult life with varying degrees of support.
Duplication of the GATA4 transcription factor () is believed to underlie the congenital heart disease and other genes, common to the duplication and deletion syndromes, can be regarded as candidates for the 8p23.1 duplication syndrome. These include the SOX7 transcription factor () for both CHD and developmental delay and the TNKS gene () for behavioural difficulties. The diaphragmatic hernia found in the 8p23.1 deletion syndrome has not been found in the 8p23.1 duplication syndrome to date.
The duplication may be associated with copy number changes of the adjacent olfactory receptor/defensin repeats (ORDRs) that predispose to the 8p23.1 deletion and duplication syndromes. High total copy numbers of these repeats have been associated with predisposition to psoriasis and low copy number with predisposition to Crohn's disease.