Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Viral infections such as canine parainfluenza or canine coronavirus are only shed for roughly 1 week following recovery; however, respiratory infections involving "Bordetella bronchiseptica" can be transmissible for several weeks longer. While there was early evidence to suggest that "B. bronchiseptica" could be shed for many months post-infection, a more recent report places detectable nasal and pharyngeal levels of "B. bronchiseptica" in 45.6% of all clinically healthy dogs. This has potentially expanded the vector from currently or recently infected dogs to half the dog population as carriers. To put the relative levels of shedding bacteria into perspective, a study analyzing the shedding kinetics of "B. bronchiseptica" presents the highest levels of bacterial shedding one week post-exposure, with an order of magnitude decrease in shedding observed every week. This projection places negligible levels of shedding to be expected 6 weeks post-exposure (or ~5 weeks post-onset of symptoms). Dogs which had been administered intranasal vaccine 4 weeks prior to virulent "B. bronchiseptica" challenge displayed little to no bacterial shedding within 3 weeks of exposure to the virulent strain.
Dogs will typically recover from kennel cough within a few weeks. However, secondary infections could lead to complications that could do more harm than the disease itself. Several opportunistic invaders have been recovered from the respiratory tracts of dogs with kennel cough, including Streptococcus, Pasteurella, Pseudomonas, and various coliforms. These bacteria have the potential to cause pneumonia or sepsis, which drastically increase the severity of the disease. These complications are evident in thoracic radiographic examinations. Findings will be mild in animals affected only by kennel cough, while those with complications may have evidence of segmental atelectasis and other severe side effects.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Human-to-human transmission of SARS-CoV-2 has been confirmed during the 2019–20 coronavirus pandemic. Transmission occurs primarily via respiratory droplets from coughs and sneezes within a range of about 1.8 metres (6 ft). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary research indicates that the virus may remain viable on plastic and steel for up to three days, but does not survive on cardboard for more than one day or on copper for more than four hours; the virus is inactivated by soap, which destabilises its lipid bilayer. Viral RNA has also been found in stool samples from infected individuals.
The degree to which the virus is infectious during the incubation period is uncertain, but research has indicated that the pharynx reaches peak viral load approximately four days after infection. On 1 February 2020, the World Health Organization (WHO) indicated that "transmission from asymptomatic cases is likely not a major driver of transmission". However, an epidemiological model of the beginning of the outbreak in China suggested that "pre-symptomatic shedding may be typical among documented infections" and that subclinical infections may have been the source of a majority of infections.
There is some evidence of human-to-animal transmission of SARS-CoV-2, including examples in felids. Some institutions have advised those infected with SARS-CoV-2 to restrict contact with animals.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus strain that causes coronavirus disease 2019 (COVID-19), a respiratory illness. It is colloquially known as the coronavirus, and was previously referred to by its provisional name 2019 novel coronavirus (2019-nCoV). SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is contagious in humans, and the World Health Organization (WHO) has designated the ongoing pandemic of COVID-19 a Public Health Emergency of International Concern. Because the strain was first discovered in Wuhan, China, it is sometimes referred to as "Wuhan virus" or "Wuhan coronavirus". Since the WHO discourages the use of names based on locations such as MERS, and to avoid confusion with the disease SARS, it sometimes refers to SARS-CoV-2 as "the COVID-19 virus" in public health communications. The general public frequently calls both SARS-CoV-2 and the disease it causes "coronavirus", but scientists typically use more precise terminology.
Taxonomically, SARS-CoV-2 is a strain of Severe acute respiratory syndrome-related coronavirus (SARSr-CoV). It is believed to have zoonotic origins and has close genetic similarity to bat coronaviruses, suggesting it emerged from a bat-borne virus. An intermediate animal reservoir such as a pangolin is also thought to be involved in its introduction to humans. The virus shows little genetic diversity, indicating that the spillover event introducing SARS-CoV-2 to humans is likely to have occurred in late 2019.
Epidemiological studies estimate each infection results in 1.4 to 3.9 new ones when no members of the community are immune and no preventive measures taken. The virus is primarily spread between people through close contact and via respiratory droplets produced from coughs or sneezes. It mainly enters human cells by binding to the receptor angiotensin converting enzyme 2 (ACE2).
Viral pneumonia occurs in about 200 million people a year which includes about 100 million children and 100 million adults.
Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens. The disease is caused by avian infectious bronchitis virus (IBV), a coronavirus, and characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal (watery egg white) and external (fragile, soft, irregular or rough shells, shell-less) egg quality are reported.
There is no vaccine for SARS to date. Isolation and quarantine remain the most effective means to prevent the spread of SARS. Other preventative measures include:
- Handwashing
- Disinfection of surfaces for fomites
- Wearing a surgical mask
- Avoiding contact with bodily fluids
- Washing the personal items of someone with SARS in hot, soapy water (eating utensils, dishes, bedding, etc.)
- Keeping children with symptoms home from school
Many public health interventions were taken to help control the spread of the disease; which is mainly spread through respiratory droplets in the air. These interventions included earlier detection of the disease, isolation of people who are infected, droplet and contact precautions, and the use of personal protective equipment (PPE); including masks and isolation gowns. A screening process was also put in place at airports to monitor air travel to and from affected countries. Although no cases have been identified since 2004, the CDC is still working to make federal and local rapid response guidelines and recommendations in the event of a reappearance of the virus.
Several consequent reports from China on some recovered SARS patients showed severe long-time sequelae exist. The most typical diseases include, among other things, pulmonary fibrosis, osteoporosis, and femoral necrosis, which have led to the complete loss of working ability or even self-care ability of these cases. As a result of quarantine procedures, some of the post-SARS patients have been documented suffering from posttraumatic stress disorder (PTSD) and major depressive disorder.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
As of March 2020, it was unknown if past infection provides effective and long-term immunity in people who recover from the disease. Immunity is seen as likely, based on the behaviour of other coronaviruses, but cases in which recovery from COVID-19 have been followed by positive tests for coronavirus at a later date have been reported. These cases are believed to be worsening of a lingering infection rather than re-infection.
Lower respiratory infectious disease is the fifth-leading cause of death and the combined leading infectious cause of death, being responsible for 2·74 million deaths worldwide. This is generally similar to estimates in the 2010 Global Burden of Disease study.
This total only accounts for "Streptococcus pneumoniae" and "Haemophilus Influenzae" infections and does not account for atypical or nosocomial causes of lower respiratory disease, therefore underestimating total disease burden.
There has been evidence of limited, but not sustained spread of MERS-CoV from person to person, both in households as well as in health care settings like hospitals. Most transmission has occurred "in the circumstances of close contact with severely ill persons in healthcare or household settings" and there is no evidence of transmission from asymptomatic cases. Cluster sizes have ranged from 1 to 26 people, with an average of 2.7.
The impact of the pandemic and its mortality rate are different for men and women. Mortality is higher in men in studies conducted in China and Italy. The highest risk for men is in their 50s, with the gap between men and women closing only at 90. In China, the death rate was 2.8 percent for men and 1.7 percent for women. The exact reasons for this sex-difference is not known, but genetic and behavioural factors could be a reason. Sex-based immunological differences, lesser prevalence of smoking in women and men developing co-morbid conditions such as hypertension at a younger age than women could have contributed to the higher mortality in men. In Europe, 57% of the infected individuals were men and 72% of those died with COVID-19 were men. As of April 2020, the US government is not tracking sex-related data of COVID-19 infections. Research has shown that viral illnesses like Ebola, HIV, influenza and SARS affect men and women differently. A higher percentage of health workers, particularly nurses, are women, and they have a higher chance of being exposed to the virus. School closures, lockdowns and reduced access to healthcare following the 2019–20 coronavirus pandemic may deferentially affect the genders and possibly exaggerate existing gender disparity.
Paravaccinia is a member of the Parapoxvirus family. It has a cylindrical body about 140 X 310 nm in size, with convex ends covered in a criss-cross pattern of rope like structures. The virus is resistant to cold, dehydration, and temperatures up to 56 °C. Upon injecting a cell with its genome, the virus begins transcription in the cytoplasm using viral RNA polymerase. As the virus progresses through the cell, the host begins to replicate the viral genome between 140 minutes and 48 hours.
The mainstay of eradication is the identification and removal of persistently infected animals. Re-infection is then prevented by vaccination and high levels of biosecurity, supported by continuing surveillance. PIs act as viral reservoirs and are the principal source of viral infection but transiently infected animals and contaminated fomites also play a significant role in transmission.
Leading the way in BVD eradication, almost 20 years ago, were the Scandinavian countries. Despite different conditions at the start of the projects in terms of legal support, and regardless of initial prevalence of herds with PI animals, it took all countries approximately 10 years to reach their final stages.
Once proven that BVD eradication could be achieved in a cost efficient way, a number of regional programmes followed in Europe, some of which have developed into national schemes.
Vaccination is an essential part of both control and eradication. While BVD virus is still circulating within the national herd, breeding cattle are at risk of producing PI neonates and the economic consequences of BVD are still relevant. Once eradication has been achieved, unvaccinated animals will represent a naïve and susceptible herd. Infection from imported animals or contaminated fomites brought into the farm, or via transiently infected in-contacts will have devastating consequences.
The traditional theory is that a cold can be "caught" by prolonged exposure to cold weather such as rain or winter conditions, which is how the disease got its name. Some of the viruses that cause the common colds are seasonal, occurring more frequently during cold or wet weather. The reason for the seasonality has not been conclusively determined. Possible explanations may include cold temperature-induced changes in the respiratory system, decreased immune response, and low humidity causing an increase in viral transmission rates, perhaps due to dry air allowing small viral droplets to disperse farther and stay in the air longer.
The apparent seasonality may also be due to social factors, such as people spending more time indoors, near infected people, and specifically children at school. There is some controversy over the role of low body temperature as a risk factor for the common cold; the majority of the evidence suggests that it may result in greater susceptibility to infection.
Fetal infection is of most consequence as this can result in the birth of a persistently infected neonate. The effects of fetal infection with BVDV are dependent upon the stage of gestation at which the dam suffers acute infection.
BVDV infection of the dam prior to conception, and during the first 18 days of gestation, results in delayed conception and an increased calving to conception interval. Once the embryo is attached, infection from days 29–41 can result in embryonic infection and resultant embryonic death.
Infection of the dam from approximately day 30 of gestation until day 120 can result in immunotolerance and the birth of calves persistently infected with the virus.
BVDV infection between 80 and 150 days of gestation may be teratogenic, with the type of birth defect dependent upon the stage of fetal development at infection. Abortion may occur at any time during gestation. Infection after approximately day 120 can result in the birth of a normal fetus which is BVD antigen-negative and BVD antibody-positive. This occurs because the fetal immune system has developed, by this stage of gestation, and has the ability to recognise and fight off the invading virus, producing anti-BVD antibodies.
The common cold virus is typically transmitted via airborne droplets (aerosols), direct contact with infected nasal secretions, or fomites (contaminated objects). Which of these routes is of primary importance has not been determined; however, hand-to-hand and hand-to-surface-to-hand contact seems of more importance than transmission via aerosols. The viruses may survive for prolonged periods in the environment (over 18 hours for rhinoviruses) and can be picked up by people's hands and subsequently carried to their eyes or nose where infection occurs. Transmission is common in daycare and at school due to the proximity of many children with little immunity and frequently poor hygiene. These infections are then brought home to other members of the family. There is no evidence that recirculated air during commercial flight is a method of transmission. People sitting in close proximity appear to be at greater risk of infection.
Rhinovirus-caused colds are most infectious during the first three days of symptoms; they are much less infectious afterwards.
Bovine malignant catarrhal fever (BMCF) is a fatal lymphoproliferative disease caused by a group of ruminant gamma herpes viruses including Alcelaphine gammaherpesvirus 1 (AlHV-1) and Ovine gammaherpesvirus 2 (OvHV-2) These viruses cause unapparent infection in their reservoir hosts (sheep with OvHV-2 and wildebeest with AlHV-1), but are usually fatal in cattle and other ungulates such as deer, antelope, and buffalo.
BMCF is an important disease where reservoir and susceptible animals mix. There is a particular problem with Bali cattle in Indonesia, bison in the US and in pastoralist herds in Eastern and Southern Africa.
Disease outbreaks in cattle are usually sporadic although infection of up to 40% of a herd has been reported. The reasons for this are unknown. Some species appear to be particularly susceptible, for example Pére Davids deer, Bali cattle and bison, with many deer dying within 48 hours of the appearance of the first symptoms and bison within three days. In contrast, post infection cattle will usually survive a week or more.
Vaccination
There is one intra-nasal FIP vaccine available: its use is controversial but in an independent study the authors concluded that vaccination can protect cats with no or low FCoV antibody titres and that in some cats vaccine failure was probably due to pre-existing infection.
Prevention of FCoV infection, and therefore FIP, in kittens
Kittens are protected from infection by maternally derived antibody until it wanes, usually around 5–7 weeks of age, therefore it is possible to prevent infection of kittens by removing them from sources of infection. However, FCoV is a very contagious virus and such prevention does require rigorous hygiene.
Feline infectious peritonitis (FIP) is the name given to an uncommon, but usually fatal, aberrant immune response to infection with feline coronavirus (FCoV).
The term "bovine malignant catarrhal fever" has been applied to three different patterns of disease:
- In Africa, wildebeests carry a lifelong infection of AlHV-1 but are not affected by the disease. The virus is passed from mother to offspring and shed mostly in the nasal secretions of wildebeest calves under one year old. Wildebeest associated MCF is transmitted from wildebeest to cattle normally following the wildebeest calving period. Cattle of all ages are susceptible to the disease, with a higher infection rate in adults, particularly in peripartuent females. Cattle are infected by contact with the secretions, but do not spread the disease to other cattle. Because no commercial treatment or vaccine is available for this disease, livestock management is the only method of control. This involves keeping cattle away from wildebeest during the critical calving period. This results in Massai pastoralists in Tanzania and Kenya being excluded from prime pasture grazing land during the wet season leading to a loss in productivity. In Eastern and Southern Africa MCF is classed as one of the five most important problems affecting pastoralists along with East coast fever, contagious bovine pleuropneumonia, foot and mouth disease and anthrax.Hartebeests and topi also may carry the disease. However, hartebeests and other antelopes are infected by a variant, Alcelaphine herpesvirus 2.
- Throughout the rest of the world, cattle and deer contract BMCF by close contact with sheep or goats during lambing. The natural host reservoir for Ovine herpesvirus 2 is the subfamily Caprinae (sheep and goats) whilst MCF affected animals are from the families Bovidae, Cervidae and suidae. Susceptibility to OHV-2 varies by species, with domestic cattle and zebus somewhat resistant, water buffalo and most deer somewhat susceptible, and bison, Bali cattle, and Pere David's deer very susceptible. OHV-2 viral DNA has been detected in the alimentary, respiratory and urino-genital tracts of sheep all of which could be possible transmission routes. Antibody from sheep and from cattle with BMCF is cross reactive with AlHV-1.
- AHV-1/OHV-2 can also cause problems in zoological collections, where inapparently infected hosts (wildebeest and sheep) and susceptible hosts are often kept in close proximity.
- Feedlot bison in North America not in contact with sheep have also been diagnosed with a form of BMCF. OHV-2 has been recently documented to infect herds of up to 5 km away from the nearest lambs, with the levels of infected animals proportional to the distance away from the closest herds of sheep.
The incubation period of BMCF is not known, however intranasal challenge with AHV-1 induced MCF in one hundred percent of challenged cattle between 2.5 and 6 weeks.
Shedding of the virus is greater from 6–9 month old lambs than from adults. After experimental infection of sheep, there is limited viral replication in nasal cavity in the first 24 hours after infection, followed by later viral replication in other tissues.