Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
For early cases, prompt treatment is usually curative. However, the severity and treatment of Lyme disease may be complicated due to late diagnosis, failure of antibiotic treatment, and simultaneous infection with other tick-borne diseases (coinfections), including ehrlichiosis, babesiosis, and immune suppression in the patient.
It is believed that less than 5% of people have lingering symptoms of fatigue, pain, or joint and muscle aches at the time they finish treatment. These symptoms can last for more than 6 months. This condition is called post-treatment lyme disease syndrome. As of 2016 the reason for the lingering symptoms was not known; the condition is generally managed similarly to fibromyalgia or chronic fatigue syndrome.
In dogs, a serious long-term prognosis may result in glomerular disease, which is a category of kidney damage that may cause chronic kidney disease. Dogs may also experience chronic joint disease if the disease is left untreated. However, the majority of cases of Lyme disease in dogs result in a complete recovery with, and sometimes without, treatment with antibiotics. In rare cases, Lyme disease can be fatal to both humans and dogs.
Outdoor workers are at risk of Lyme disease if they work at sites with infected ticks. In 2010, the highest number of confirmed Lyme disease cases were reported from New Jersey, Pennsylvania, Wisconsin, New York, Massachusetts, Connecticut, Minnesota, Maryland, Virginia, New Hampshire, Delaware, and Maine. U.S. workers in the northeastern and north-central States are at highest risk of exposure to infected ticks. Ticks may also transmit other tick-borne diseases to workers in these and other regions of the country. Worksites with woods, bushes, high grass, or leaf litter are likely to have more ticks. Outdoor workers should be extra careful to protect themselves in the late spring and summer when young ticks are most active.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
Relapsing fever is easily treated with a one- to two-week-course of antibiotics, and most people improve within 24 hours. Complications and death due to relapsing fever are rare.
Tetracycline-class antibiotics are most effective. These can, however, induce a Jarisch–Herxheimer reaction in over half those treated, producing anxiety, diaphoresis, fever, tachycardia and tachypnea with an initial pressor response followed rapidly by hypotension. Recent studies have shown tumor necrosis factor-alpha may be partly responsible for this reaction.
For a person or companion animal to acquire a tick-borne disease requires that that individual gets bitten by a tick and that that tick feeds for a sufficient period of time. The feeding time required to transmit pathogens differs for different ticks and different pathogens. Transmission of the bacterium that causes Lyme disease is well understood to require a substantial feeding period.
For an individual to acquire infection, the feeding tick must also be infected. Not all ticks are infected. In most places in the US, 30-50% of deer ticks will be infected with "Borrelia burgdorferi" (the agent of Lyme disease). Other pathogens are much more rare. Ticks can be tested for infection using a highly specific and sensitive qPCR procedure. Several commercial labs provide this service to individuals for a fee. The Laboratory of Medical Zoology (LMZ), a nonprofit lab at the University of Massachusetts, provides a comprehensive TickReport for a variety of human pathogens and makes the data available to the public. Those wishing to know the incidence of tick-borne diseases in their town or state can search the LMZ surveillance database.
Ticks tend to be more active during warmer months, though this varies by geographic region and climate. Areas with woods, bushes, high grass, or leaf litter are likely to have more ticks. Those bitten commonly experience symptoms such as body aches, fever, fatigue, joint pain, or rashes. People can limit their exposure to tick bites by wearing light-colored clothing (including pants and long sleeves), using insect repellent with 20%–30% DEET, tucking their pants legs into their socks, checking for ticks frequently, and washing and drying their clothing (in a hot dryer).
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
Infectious pathogen-associated diseases include many of the most common and costly chronic illnesses. The treatment of chronic diseases accounts for 75% of all US healthcare costs (amounting to $1.7 trillion in 2009).
"A. phagocytophilum" is transmitted to humans by "Ixodes" ticks. These ticks are found in the US, Europe, and Asia. In the US, "I. scapularis" is the tick vector in the East and Midwest states, and "I. pacificus" in the Pacific Northwest. In Europe, the "I. ricinus" is the main tick vector, and "I. persulcatus" is the currently known tick vector in Asia.
The major mammalian reservoir for "A. phagocytophilum" in the eastern United States is the white-footed mouse, "Peromyscus leucopus". Although white-tailed deer and other small mammals harbor "A. phagocytophilum", evidence suggests that they are not a reservoir for the strains that cause HGA. A tick that has a blood meal from an infected reservoir becomes infected themselves. If an infected tick then latches onto a human the disease is then transmitted to the human host and "A." "phagocytophilum" symptoms can arise.
"Anaplasma phagocytophilum" shares its tick vector with other human pathogens, and about 10% of patients with HGA show serologic evidence of coinfection with Lyme disease, babesiosis, or tick-borne meningoencephalitis.
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
From the first reported case in 1994 until 2010, HGA's rates of incidence have exponentially increased. This is likely because HGA is found where there are ticks that carry and transmit Lyme disease, also known as Borrelia burgdorferi, and babesiosis, which is found in the northeastern and midwestern parts of the United States, which has seemingly increased in the past couple of decades. Before 2000, there were less than 300 cases reported per year. In 2000, there were only 350 reported cases. From 2009-2010, HGA experienced a 52% increase in the number of cases reported.
Infectious diseases are sometimes called contagious disease when they are easily transmitted by contact with an ill person or their secretions (e.g., influenza). Thus, a contagious disease is a subset of infectious disease that is especially infective or easily transmitted. Other types of infectious/transmissible/communicable diseases with more specialized routes of infection, such as vector transmission or sexual transmission, are usually not regarded as "contagious", and often do not require medical isolation (sometimes loosely called quarantine) of victims. However, this specialized connotation of the word "contagious" and "contagious disease" (easy transmissibility) is not always respected in popular use.
Infectious diseases are commonly transmitted from person to person through direct contact. The types of contact are through person to person and droplet spread. Indirect contact such as airborne transmission, contaminated objects, food and drinking water, animal person contact, animal reservoirs, insect bites, and environmental reservoirs are another way infectious diseases are transmitted,
For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:
- Droplet contact, also known as the "respiratory route", and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
- Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include "Vibrio cholerae", "Giardia" species, rotaviruses, "Entameba histolytica", "Escherichia coli", and tape worms. Most of these pathogens cause gastroenteritis.
- Sexual transmission, with the resulting disease being called sexually transmitted disease
- Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
- Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
- Vehicle Transmission, transmission by an inanimate reservoir (food, water, soil).
- Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
- Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
- Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.
The relationship between "virulence versus transmissibility" is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.
Serious complications are uncommon, occurring in less than 5% of cases:
- CNS complications include meningitis, encephalitis, hemiplegia, Guillain–Barré syndrome, and transverse myelitis. Prior infectious mononucleiosis has been linked to the development of multiple sclerosis (MS).
- Hematologic: Hemolytic anemia (direct Coombs test is positive) and various cytopenias, and bleeding (caused by thrombocytopenia) can occur.
- Mild jaundice
- Hepatitis with the Epstein–Barr virus is rare.
- Upper airway obstruction from tonsillar hypertrophy is rare.
- Fulminant disease course of immunocompromised patients is rare.
- Splenic rupture is rare.
- Myocarditis and pericarditis are rare.
- Postural orthostatic tachycardia syndrome
- Chronic fatigue syndrome
- Cancers associated with the Epstein-Barr virus include: Burkitt's lymphoma, Hodgkin's lymphoma and lymphomas in general as well as nasopharyngeal and gastric carcinoma.
Once the acute symptoms of an initial infection disappear, they often do not return. But once infected, the patient carries the virus for the rest of his or her life. The virus typically lives dormantly in B lymphocytes. Independent infections of mononucleosis may be contracted multiple times, regardless of whether the patient is already carrying the virus dormantly. Periodically, the virus can reactivate, during which time the patient is again infectious, but usually without any symptoms of illness. Usually, a patient has few, if any, further symptoms or problems from the latent B lymphocyte infection. However, in susceptible hosts under the appropriate environmental stressors, the virus can reactivate and cause vague physical symptoms (or may be subclinical), and during this phase the virus can spread to others.
Equine infectious anemia or equine infectious anaemia (EIA), also known by horsemen as swamp fever, is a horse disease caused by a retrovirus and transmitted by bloodsucking insects. The virus ("EIAV") is endemic in the Americas, parts of Europe, the Middle and Far East, Russia, and South Africa. The virus is a lentivirus, like human immunodeficiency virus (HIV). Like HIV, EIA can be transmitted through blood, milk, and body secretions.
Transmission is primarily through biting flies, such as the horse-fly and deer-fly. The virus survives up to 4 hours in the vector (epidemiology). Contaminated surgical equipment and recycled needles and syringes, and bits can transmit the disease. Mares can transmit the disease to their foals via the placenta.
The risk of transmitting the disease is greatest when an infected horse is ill, as the blood levels of the virus are then highest.
A vaccine is available, called "Chinese Live Attenuated EIA vaccine", developed in China and widely used there since 1983. Another attenuated live virus vaccine is in development in the United States.
Reuse of syringes and needles is a risk factor for transfer of the disease. Currently in the United States, all horses that test positive must be reported to federal authorities by the testing laboratory. EIA-positive horses are infected for life. Options for the horse include sending the horse to a recognized research facility, branding the horse and quarantining it at least 200 yards from other horses for the rest of its life, and euthanizing the horse. Very few quarantine facilities exist, which usually leads to the option of euthanizing the horse. The Florida Research Institute for Equine Nurturing, Development and Safety (a.k.a. F.R.I.E.N.D.S.) is one of the largest such quarantine facilities and is located in south Florida.
The horse industry and the veterinary industry strongly suggest that the risks posed by infected horses, even if they are not showing any clinical signs, are enough of a reason to impose such stringent rules. The precise impacts of the disease on the horse industry are unknown.
The Baggio–Yoshinari syndrome (BYS), formerly known as the Brazilian Lyme-like disease and Brazilian human borreliosis, is a disease transmitted by the "Amblyomma cajennense" tick, but the organism that causes the infection is still unknown. Clinical features resemble those of Lyme disease (LD).
About 90% of cases of infectious mononucleosis are caused by the Epstein–Barr virus, a member of the Herpesviridae family of DNA viruses. It is one of the most commonly found viruses throughout the world. Contrary to common belief, the Epstein–Barr virus is not highly contagious. It can only be contracted through direct contact with an infected person’s saliva, such as through kissing or sharing toothbrushes, cups, etc. About 95% of the population has been exposed to this virus by the age of 40, but only 15–20% of teenagers and about 40% of exposed adults actually become infected.
Brazilian hemorrhagic fever (BzHF) is an infectious disease caused by the Sabiá virus, an Arenavirus. The Sabiá virus is one of the arenoviruses from South America to cause hemorrhagic fever. It shares a common progenitor with the Junin virus, Machupo virus, Tacaribe virus, and Guanarito virus. It is an enveloped RNA virus and is highly infectious and lethal. Very little is known about this disease, but it is thought to be transmitted by the excreta of rodents.
There have only been three documented infections of the Sabiá virus, only one of which occurred naturally and the other two cases occurred in the clinical setting. The only naturally occurring case was in 1990, when a female agricultural engineer who was staying in the neighborhood of Jardim Sabiá near São Paulo, Brazil contracted the disease. She presented with hemorrhagic fever and died. Her autopsy showed liver necrosis. A virologist who was studying the woman's disease contracted the virus but survived. Ribavirin was not given in these first two cases. Four years later, in 1994, a researcher was exposed to the virus in a level 3 biohazard facility at Yale University when a centrifuge bottle cracked, leaked, and released aerosolized virus particle. He was successfully treated with ribavirin.
Ribavirin is thought to be effective in treating the illness, similar to other arenaviruses. Compared to the patients who did not receive ribavirin, the patient who was treated with it had a shorter and less severe clinical course. Symptomatic control such as fluids to address dehydration and bleeding may also be required.
The Sabiá virus is a Biosafety Level 4 pathogen.
This virus has also been implicated as a means for bioterrorism, as it can be spread through aerosols.
Symptoms of infectious mononucleosis are fever, sore throat, and swollen lymph glands. Sometimes, a swollen spleen or liver involvement may develop. Heart problems or involvement of the central nervous system occurs only rarely, and infectious mononucleosis is almost never fatal. There are no known associations between active EBV infection and problems during pregnancy, such as miscarriages or birth defects. Although the symptoms of infectious mononucleosis usually resolve in 1 or 2 months, EBV remains dormant or latent in a few cells in the throat and blood for the rest of the person's life. Periodically, the virus can reactivate and is commonly found in the saliva of infected persons. Reactivated and post-latent virus may pass the placental barrier in (also seropositive) pregnant women via macrophages and therefore can infect the fetus. Also re-infection of prior seropositive individuals may occur. In contrast, reactivation in adults usually occurs without symptoms of illness.
EBV also establishes a lifelong dormant infection in some cells of the body's immune system. A late event in a very few carriers of this virus is the emergence of Burkitt's lymphoma and nasopharyngeal carcinoma, two rare cancers. EBV appears to play an important role in these malignancies, but is probably not the sole cause of disease.
Most individuals exposed to people with infectious mononucleosis have previously been infected with EBV and are not at risk for infectious mononucleosis. In addition, transmission of EBV requires intimate contact with the saliva (found in the mouth) of an infected person. Transmission of this virus through the air or blood does not normally occur. The incubation period, or the time from infection to appearance of symptoms, ranges from 4 to 6 weeks. Persons with infectious mononucleosis may be able to spread the infection to others for a period of weeks. However, no special precautions or isolation procedures are recommended, since the virus is also found frequently in the saliva of healthy people. In fact, many healthy people can carry and spread the virus intermittently for life. These people are usually the primary reservoir for person-to-person transmission. For this reason, transmission of the virus is almost impossible to prevent.
The clinical diagnosis of infectious mononucleosis is suggested on the basis of the symptoms of fever, sore throat, swollen lymph glands, and the age of the patient. Usually, laboratory tests are needed for confirmation. Serologic results for persons with infectious mononucleosis include an elevated white blood cell count, an increased percentage of certain atypical white blood cells, and a positive reaction to a "mono spot" test.
In 1989, Brazilian researchers Professors Domingos Baggio (an entomologist from the Biomedical Sciences Institute of the University of São Paulo), Paulo Yasuda (a microbiologist from the same institute) and Natalino Hajime Yoshinari (a physician from the Rheumatology Department at University of São Paulo's Medical School) started research on Lyme disease in Brazil, by suggestion of Dr. Allen Steere. At that time, LD was almost unknown among Brazilian physicians.
The first cases were described in Brazil in 1992 in siblings from Cotia, São Paulo that developed symptoms as a migrating redness, general flu-like symptoms and arthritis after being bitten by ticks. Although the symptoms were similar to those presented by patients of Lyme disease, clinical and laboratorial results were considerably different. Ticks of the "Ixodes ricinus" complex were not found at the risk areas; bacteria from the "Borrelia burgdorferi" sensu lato complex —that cause Lyme disease— were not found in biological fluids and tissues of the siblings. Blood analysis of the patients on electron microscopy exhibited structures resembling microorganisms of the spirochaete phylum. For these reasons, the Brazilian zoonosis was considered a new disease and named Baggio–Yoshinari Syndrome (BYS), defined as: "Exotic and emerging Brazilian infectious disease, transmitted by ticks not belonging to the "Ixodes ricinus" complex, caused by latent spirochetes with atypical morphology, which originates LD-like symptoms, except for occurrence of relapsing episodes and auto-immune disorders".
Chronic Lyme disease is a generally unrecognised diagnosis that encompasses "a broad array of illnesses or symptom complexes for which there is no reproducible or convincing scientific evidence of any relationship to "B. burgdorferi" infection." There is no clinical evidence that "chronic" Lyme disease is caused by a persistent infection. It is distinct from post-treatment Lyme disease syndrome, a set of lingering symptoms which may persist after successful treatment of infection with Lyme spirochetes. The symptoms of "chronic Lyme" are generic and non-specific "symptoms of life".
A number of alternative treatments are promoted for "chronic Lyme disease", of which possibly the most controversial and harmful is long-term antibiotic therapy, particularly intravenous antibiotics. Most medical authorities advise against long-term antibiotic treatment for Lyme disease, though they agree that some patients do experience lingering symptoms. Following disciplinary proceedings by State medical licensing boards in the United States, a subculture of "Lyme literate" physicians has successfully lobbied for specific legal protections, exempting them from the standard of care and Infectious Diseases Society of America treatment guidelines. This "troubling" political interference in medical care has been criticised as an example of "legislative alchemy", the process whereby pseudomedicine is legislated into practice.