Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The mode of transmission of BoDV-1/2 is unclear but probably occurs through intranasal exposure to contaminated saliva or nasal secretions. Following infection, individuals may develop Borna disease, or may remain subclinical, possibly acting as a carrier of the virus.
There is some evidence that there may be a relationship between BoDV-1 infection and psychiatric disease.
In 1990, Janice E. Clements and colleagues reported in the journal "Science" that antibodies to a protein encoded by the BoDV-1 genome are found in the blood of patients with behavioral disorders. In the early 1990s, researchers in Germany, America, and Japan conducted an investigation of 5000 patients with psychiatric disorders and 1000 controls, in which a significantly higher percentage of patients than controls were positive for BoDV-1 antibodies. Subsequent studies have also presented evidence for an association between BoDV-1 and human psychiatric disorders. However, not all researchers consider the link between BoDV-1 and human psychiatric disease to be conclusively proven. A recent study found no BoDV-1 antibodies in 62 patients with the deficit form of schizophrenia.
Additional evidence for a role of BoDV-1 in psychiatric disorders comes from reports that the drug amantadine, which is used to treat influenza infections, has had some success in treating depression and clearing BoDV-1 infection. Counter-claims state that Borna virus infections are not cleared by amantadine. The issue is further complicated by the fact that amantadine is also used in the treatment of Parkinson's disease and may have direct effects on the nervous system.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
Vaccination is the only known method to prevent the development of tumors when chickens are infected with the virus. However, administration of vaccines does not prevent transmission of the virus, i.e., the vaccine is not sterilizing. However, it does reduce the amount of virus shed in the dander, hence reduces horizontal spread of the disease. Marek's disease does not spread vertically. The vaccine was introduced in 1970 and the scientist credited with its development is Dr. Ben Roy Burmester and Dr. Frank J Siccardi. Before that, Marek's disease caused substantial revenue loss in the poultry industries of the United States and the United Kingdom. The vaccine can be administered to one-day-old chicks through subcutaneous inoculation or by "in ovo" vaccination when the eggs are transferred from the incubator to the hatcher. "In ovo" vaccination is the preferred method, as it does not require handling of the chicks and can be done rapidly by automated methods. Immunity develops within two weeks.
The vaccine originally contained the antigenically similar turkey herpesvirus, which is serotype 3 of MDV. However, because vaccination does not prevent infection with the virus, the Marek's disease virus has evolved increased virulence and resistance to this vaccine. As a result, current vaccines use a combination of vaccines consisting of HVT and gallid herpesvirus type 3 or an attenuated MDV strain, CVI988-Rispens (ATCvet code: ).
Swine vesicular disease is most commonly brought into a herd by the introduction of a subclinically infected pig.
The disease can be transmitted in feed containing infected meat scraps, or by direct contact with infected feces (such as in an improperly cleaned truck).
Marek's disease is a highly contagious viral neoplastic disease in chickens. It is named after József Marek, a Hungarian veterinarian. Marek's disease is caused by an alphaherpesvirus known as 'Marek's disease virus' (MDV) or "Gallid alphaherpesvirus 2" (GaHV-2). The disease is characterized by the presence of T cell lymphoma as well as infiltration of nerves and organs by lymphocytes. Viruses "related" to MDV appear to be benign and can be used as vaccine strains to prevent Marek's disease. For example, the related Herpesvirus of Turkeys (HVT), causes no apparent disease in turkeys and continues to be used as a vaccine strain for prevention of Marek's disease (see below). Birds infected with GaHV-2 can be carriers and shedders of the virus for life. Newborn chicks are protected by maternal antibodies for a few weeks. After infection, microscopic lesions are present after one to two weeks, and gross lesions are present after three to four weeks. The virus is spread in dander from feather follicles and transmitted by inhalation.
Pacheco's disease is an eponymously named disease; it is named after the Brazilian veterinarian, Genesio Pacheco, who first came across the disease in 1929, in an outbreak affecting the turquoise-fronted amazon parrot, "Amazona aestiva". Initially, Pacheco's disease was thought to be a manifestation of avian psittacosis. The causative agent of the disease, a herpesvirus, was not identified until 1975.
Chronic Lyme disease is a generally unrecognised diagnosis that encompasses "a broad array of illnesses or symptom complexes for which there is no reproducible or convincing scientific evidence of any relationship to "B. burgdorferi" infection." There is no clinical evidence that "chronic" Lyme disease is caused by a persistent infection. It is distinct from post-treatment Lyme disease syndrome, a set of lingering symptoms which may persist after successful treatment of infection with Lyme spirochetes. The symptoms of "chronic Lyme" are generic and non-specific "symptoms of life".
A number of alternative treatments are promoted for "chronic Lyme disease", of which possibly the most controversial and harmful is long-term antibiotic therapy, particularly intravenous antibiotics. Most medical authorities advise against long-term antibiotic treatment for Lyme disease, though they agree that some patients do experience lingering symptoms. Following disciplinary proceedings by State medical licensing boards in the United States, a subculture of "Lyme literate" physicians has successfully lobbied for specific legal protections, exempting them from the standard of care and Infectious Diseases Society of America treatment guidelines. This "troubling" political interference in medical care has been criticised as an example of "legislative alchemy", the process whereby pseudomedicine is legislated into practice.
Ataxia was observed to last for about 8 weeks in the affected animals. The ultimate result is death of the infected animals.
Feline spongiform encephalopathy (FSE) is a prion disease thought to be related or identical to Bovine spongiform encephalopathy (BSE).This disease is known to affect domestic and captive feline species. Lezmi S. et al. (2003), suggested that this infectious agent might be spread by both haematogenous and nervous pathways. Like BSE, this disease can take several years to develop. It is probable, but not proven, that the affected animals contract the disease by eating contaminated bovine meat.
The term "chronic Lyme disease" is often applied to several different sets of people. One usage refers to people suffering from the symptoms of untreated and disseminated late-stage Lyme disease: arthritis, peripheral neuropathy and/or encephalomyelitis. The term is also applied to people who have had the disease in the past and some symptoms remain after antibiotic treatment, which is also called post-Lyme disease syndrome. A third and controversial use of the term applies to patients with nonspecific symptoms, such as fatigue, who show no objective evidence they have been infected with Lyme disease in the past, since the standard diagnostic tests for infection are negative.
The Centers for Disease Control and Prevention state that some people after a "course of antibiotics will have lingering symptoms of fatigue, pain, or joint and muscle aches. In some cases, these can last for more than 6 months. Although often called 'chronic Lyme disease', this condition is properly known as 'post-treatment Lyme disease syndrome' (PTLDS)". This is estimated to occur in less than 5% of people who had Lyme disease and were treated.
While it is undisputed people can have severe symptoms, the cause and appropriate treatment are controversial. The symptoms may represent "for all intents and purposes" fibromyalgia or chronic fatigue syndrome. A few doctors attribute these symptoms to persistent infection with "Borrelia", or co-infections with other tick-borne pathogens, such as "Ehrlichia" and "Babesia". Other doctors believe that the initial infection may cause an autoimmune reaction that continues to cause serious symptoms even after the bacteria have been eliminated by antibiotics. A review looked at several animal studies that found persistence of live but disabled spirochetes following treatment of "B. burgdorferi" infection with antibiotics. The authors noted that none of the lingering spirochetes were associated with inflamed tissues and criticized the studies for not considering adequately the different pharmacodynamics and pharmacokinetics of the antibiotics used to treat the animals in the trials versus what would be expected to be used to treat humans. The authors concluded, "There is no scientific evidence to support the hypothesis that such spirochetes, should they exist in humans, are the cause of post-Lyme disease syndrome."
Major US medical authorities, including the Infectious Diseases Society of America, the American Academy of Neurology, and the National Institutes of Health, have stated there is no convincing evidence that "Borrelia" is involved in the various symptoms classed as chronic Lyme disease, and advise against long-term antibiotic treatment as ineffective and possibly harmful. Prolonged antibiotic therapy presents significant risks and can have dangerous side effects. Randomized placebo-controlled studies have shown that antibiotics offer no sustained benefit in people with "chronic Lyme"; with evidence of both placebo effects and significant adverse effects from such treatment. An advocacy group called the International Lyme And Associated Diseases Society (ILADS) argues the persistence of "B. burgdorferi" may be responsible for manifestations of late Lyme disease symptoms. It has questioned the generalizability and reliability of some of the above trials and the reliability of the current diagnostic tests.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
The reservoirs of the disease are carrier chickens which could be health but harboring the disease or chronically sick chickens. The disease affects all ages of chickens. The disease can persist in the flock for 2-3 weeks and signs of the disease are seen between 1–3 days post infection. Transmission of the disease is through direct interaction, airborne droplets and drinking contaminated water. Chicken having infection and those carriers contribute highly to the disease transmission
The disease is caused by bacteria called "Avibacterium paragallinarum", which is a gram-negative bacterium. The bacterium is microaerophilic rod-shaped and is nonmotile. Its growth requires presence of nicotinamide adenine dinucleotide. There are three serovars A, B and C of "A. paragallinarum" that relate by immunotype specificity.
Persons with component deficiencies in the final common complement pathway (C3,C5-C9) are more susceptible to "N. meningitidis" infection than complement-satisfactory persons, and it was estimated that the risk of infection is 7000 times higher in such individuals. In addition, complement component-deficient populations frequently experience frequent meningococcal disease since their immune response to natural infection may be less complete than that of complement non-deficient persons.
Inherited properdin deficiency also is related, with an increased risk of contracting meningococcal disease. Persons with functional or anatomic asplenia may not efficiently clear encapsulated "Neisseria meningitidis" from the bloodstream Persons with other conditions associated with immunosuppression also may be at increased risk of developing meningococcal disease.
Although Tyzzer’s disease is commonly found in laboratory animals worldwide, infected wild animal populations have been identified in North America and Australia. Specific locations where the disease has been reported in the United States include Connecticut, Idaho, Iowa, Maryland, Michigan, Montana, Ohio, Wisconsin, and Wyoming. In Canada, it has been reported in British Columbia, Manitoba, Ontario, and Saskatchewan. Outbreaks in these locations are primarily attributed to muskrat populations; however infected cottontail rabbits have been discovered in Maryland.
Tyzzer’s disease is an acute epizootic bacterial disease found in rodents, rabbits, dogs, cats, birds, pandas, deer, foals, cattle, and other mammals including gerbils. It is caused by the spore-forming bacterium "Clostridium piliforme", formerly known as "Bacillus piliformis". It is an infectious disease characterized by necrotic lesions on the liver, is usually fatal, and is present worldwide. Animals with the disease become infected through oral ingestion of the bacterial spores and usually die within a matter of days. Animals most commonly affected include young, stressed animals in laboratory environments, such as immature rodents and rabbits. Most commonly affected wild animals include muskrats "(Ondatra zibethicus)" and occasionally cottontail rabbits "(Lepus sylvaticus)". Even today, much remains unknown about Tyzzer’s disease, including how and why it occurs.
The importance of meningitis disease is as significant in Africa as HIV, TB and malaria. Cases of meningococcemia leading to severe meningoencephalitis are common among young children and the elderly. Deaths occurring in less than 24 hours are more likely during the disease epidemic seasons in Africa and Sub-Saharan Africa is hit by meningitis disease outbreaks throughout the epidemic season. It may be that climate change contributes significantly the spread of the disease in Benin, Burkina Faso, Cameroon, the Central African Republic, Chad, Côte d'Ivoire, the Democratic Republic of the Congo, Ethiopia, Ghana, Mali, Niger, Nigeria and Togo. This is an area of Africa where the disease is endemic: meningitis is "silently" present, and there are always a few cases. When the number of cases passes five per population of 100,000 in one week, teams are on alert. Epidemic levels are reached when there have been 100 cases per 100,000 populations over several weeks.
Further complicating efforts to halt the spread of meningitis in Africa is the fact that extremely dry, dusty weather conditions which characterize Niger and Burkina Faso from December to June favor the development of epidemics. Overcrowded villages are breeding grounds for bacterial transmission and lead to a high prevalence of respiratory tract infections, which leave the body more susceptible to infection, encouraging the spread of meningitis. IRIN Africa news has been providing the number of deaths for each country since 1995, and a mass vaccination campaign following a community outbreak of meningococcal disease in Florida was done by the CDC.
The disease is regarded as extremely rare, with an incidence (new number of cases per year) of one case per million people. The patients are predominantly male (86% in a survey of American patients), although in some countries the rate of women receiving a diagnosis of Whipple's disease has increased in recent years. It occurs predominantly in those of Caucasian ethnicity, suggesting a genetic predisposition in that population.
"T. whipplei" appears to be an environmental organism that is commonly present in the gasterointestinal tract but remains asymptomatic. Several lines of evidence suggest that some defect—inherited or acquired—in immunity is required for it to become pathogenic. The possible immunological defect may be specific for "T. whipplei", since the disease is not associated with a substantially increased risk of other infections.
The disease is usually diagnosed in middle age (median 49 years). Studies from Germany have shown that age at diagnosis has been rising since the 1960s.
Whipple's disease is a rare, systemic infectious disease caused by the bacterium "Tropheryma whipplei". First described by George Hoyt Whipple in 1907 and commonly considered a gastrointestinal disorder, Whipple's disease primarily causes malabsorption but may affect any part of the body including the heart, brain, joints, skin, lungs and the eyes. Weight loss, diarrhea, joint pain, and arthritis are common presenting symptoms, but the presentation can be highly variable and approximately 15% of patients do not have these classic signs and symptoms.
Whipple's disease is significantly more common in men, with 87% of the patients being male. When recognized and treated, Whipple's disease can usually be cured with long-term antibiotic therapy; if the disease is left untreated, it is ultimately fatal.
While risk factors vary with age and gender, most of the common chronic diseases in the US are caused by dietary, lifestyle and metabolic risk factors that are also responsible for the resulting mortality. Therefore, these conditions might be prevented by behavioral changes, such as quitting smoking, adopting a healthy diet, and increasing physical activity. Social determinants are important risk factors for chronic diseases. Social factors, e.g., socioeconomic status, education level, and race/ethnicity, are a major cause for the disparities observed in the care of chronic disease. Lack of access and delay in receiving care result in worse outcomes for patients from minorities and underserved populations. Those barriers to medical care complicate patients monitoring and continuity in treatment.
In the US, Minorities and low-income populations are less likely to access and receive preventive services necessary to detect conditions at an early stage.
The majority of US health care and economic costs associated with medical conditions are for the costs of chronic diseases and conditions and associated health risk behaviors. Eighty-four percent of all health care spending in 2006 was for the 50% of the population who have one or more chronic medical conditions (CDC, 2014).
The twins require the use of wheelchairs for mobility and are unable to speak without the assistance of electronic speaking aids. They experience persistent and painful muscle spasms which are worsened by emotional distress. They are currently living with their parents, with the assistance of hospice workers. Doctors continue to administer tests to the twins in search of a treatment.