Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The medication(s) listed below have been approved by the Food and Drug Administration (FDA) as orphan products for treatment of this condition. Learn more orphan products.
Approximately eight to 40 children are born in the United States each year with the malignant infantile type of osteopetrosis. One in every 100,000 to 500,000 individuals is born with this form of osteopetrosis. Higher rates have been found in Denmark and Costa Rica. Males and females are affected in equal numbers.
The adult type of osteopetrosis affects about 1,250 individuals in the United States. One in every 200,000 individuals is affected by the adult type of osteopetrosis. Higher rates have been found in Brazil. Males and females are affected in equal numbers.
The odds are greater in the Russian region of Mari El (1 of every 14,000 newborns) and much greater in Chuvashia (1 of every 3,500—4,000 newborns) due to genetic features of the Mari people and Chuvash people, respectively.
Myelophthisis can occur in the setting of chronic myeloproliferative disease (e.g. myelofibrosis), leukemia, lymphoma, and metastatic carcinoma or myeloma. It is common in people who have chronic idiopathic myelofibrosis. It has been linked to small-cell lung cancer, breast cancer or prostate cancer that metastasizes to the bone marrow.
Historically, the most common cause of displacement of healthy bone marrow was tuberculosis.
Currently, the most common cause is displacement of bone marrow by metastatic cancer (extramedullary hematopoiesis tends to be modest). Other causes include myeloproliferative disorders (especially late-stage or spent polycythemia vera), granulomatous diseases, and (lipid) storage diseases. Myelofibrosis can occur in all of these.
Factors that may contribute to decreased RBC production include a decreased quantity of functioning hematopoietic tissue, disordered metabolism related to the underlying disorder, and, in some cases, erythrophagocytosis.
Some cases of myelophthisis are thought to be related to the release of cytokines that simulate fibroblastic proliferation and fibrosis in the marrow.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
Bone marrow failure in both children and adults can be either inherited or acquired. Inherited bone marrow failure is often the cause in young children, while older children and adults may acquire the disease later in life. A maturation defect in genes is a common cause of inherited bone marrow failure. The most common cause of acquired bone marrow failure is aplastic anemia. Working with chemicals such as benzene could be a factor in causing the illness. Other factors include radiation or chemotherapy treatments, and immune system problems.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.
Bone marrow failure occurs in individuals who produce an insufficient amount of red blood cells, white blood cells or platelets. Red blood cells transport oxygen to be distributed throughout the body’s tissue. White blood cells fight off infections that enter the body. Bone marrow also contains platelets, which trigger clotting, and thus help stop the blood flow when a wound occurs.
Fibrous dysplasia is a disorder where normal bone and marrow is replaced with fibrous tissue, resulting in formation of bone that is weak and prone to expansion. As a result, most complications result from fracture, deformity, functional impairment, and pain. Disease occurs along a broad clinical spectrum ranging from asymptomatic, incidental lesions to severe disabling disease. Disease can affect one bone (monostotic) or multiple (polyostotic), and may occur in isolation or in combination with cafe-au-lait skin macules and hyperfunctioning endocrinopathies, termed McCune-Albright syndrome. More rarely, fibrous dysplasia may be associated with intramuscular myxomas, termed Mazabraud's syndrome. Fibrous dysplasia is very rare, and there is no known cure. Fibrous dysplasia is not a form of cancer.
The primary sign of myelofibrosis is reactive bone marrow fibrosis, but it is often accompanied by:
- Abdominal fullness related to an enlarged spleen (splenomegaly).
- Bone pain
- Bruising and easy bleeding due to inadequate numbers of platelets
- Cachexia (loss of appetite, weight loss, and fatigue)
- Enlargement of both the liver and spleen
- Fatigue
- Gout and high uric acid levels
- Increased susceptibility to infection, such as pneumonia
- Pallor and shortness of breath due to anemia
- In rarer cases, a raised red blood cell volume
- Cutaneous myelofibrosis is a rare skin condition characterized by dermal and subcutaneous nodules.
Bone marrow suppression due to azathioprine can be treated by changing to another medication such as mycophenolate mofetil (for organ transplants) or other disease-modifying drugs in rheumatoid arthritis or Crohn's disease.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
JMML accounts for 1-2% of childhood leukemias each year; in the United States, an estimated 25-50 new cases are diagnosed each year, which also equates to about 3 cases per million children. There is no known environmental cause for JMML. Since about 10% of patients are diagnosed before 3 months of age, it is thought that JMML is a congenital condition in these infants
Globally, multiple myeloma affected 488,000 people and resulted in 101,100 deaths in 2015. This is up from 49,000 in 1990.
There have been few individual epidemiological studies of CMML, due to the difficulty in the disease classification. CMML has an estimated incidence of less than 1 per 100,000 persons per year.
The median age of diagnosis is 65–75. CMML has a propensity for males rather than females, at a ratio of 1.5–3:1.
Myelokathexis is a congenital disorder of the white blood cells that causes severe, chronic leukopenia (a reduction of circulating white blood cells) and neutropenia (a reduction of neutrophil granulocytes). The disorder is believed to be inherited in an autosomal dominant manner. Myelokathexis refers to retention (kathexis) of neutrophils in the bone marrow (myelo). The disorder shows prominent neutrophil morphologic abnormalities.
Myelokathexis is amongst the diseases treated with bone marrow transplantation and cord blood stem cells.
WHIM syndrome is a very rare variant of severe congenital neutropenia that presents with warts, hypogammaglobunemia, infections, and myelokathexis. A gain in function mutation resulting in a truncated form of CXCR4 is believe to be its cause.
Iatrogenic causes of pancytopenia include chemotherapy for malignancies if the drug or drugs used cause bone marrow suppression. Rarely, drugs (antibiotics, blood pressure medication, heart medication) can cause pancytopenia.
The antibiotics Linezolid and Chloramphenicol can cause pancytopenia in some individuals.
Rarely, pancytopenia may have other causes, such as mononucleosis, or other viral diseases. Increasingly, HIV is itself a cause for pancytopenia.
- Familial hemophagocytic syndrome
- Aplastic anemia
- Gaucher's disease
- metastatic carcinoma of bone
- Multiple Myeloma
- overwhelming infections
- Lymphoma
- myelofibrosis
- Dyskeratosis congenita
- Myelodysplastic syndrome
- Leukemia
- Leishmaniasis
- Severe Folate or vitamin B12 deficiency
- Systemic lupus erythematosus
- Paroxysmal nocturnal hemoglobinuria (blood test)
- Viral infections (such as HIV, EBV--undetermined virus is most common).
- Alimentary toxic aleukia
- Copper deficiency
- Pernicious anemia
- Medication
- Hypersplenism
- Osteopetrosis
- Organic acidurias (Propionic Acidemia, Methylmalonic Aciduria, Isovaleric Aciduria)
- Low dose arsenic poisoning
- Sako disease (Myelodysplastic-cytosis)
- Chronic radiation sickness
- LIG4 syndrome
Other factors such as toxicants can adversely impact bone cells. Infections, chronic or acute, can affect blood flow by inducing platelet activation and aggregation, contributing to a localized state of excess coagulability (hypercoagulability) that may contribute to clot formation (thrombosis), a known cause of bone infarct and ischaemia. Exogenous estrogens, also called hormonal disruptors, have been linked with an increased tendency to clot (thrombophilia) and impaired bone healing.
Heavy metals such as lead and cadmium have been implicated in osteoporosis. Cadmium and lead promotes the synthesis of plasminogen activator inhibitor-1 (PAI-1) which is the major inhibitor of fibrinolysis (the mechanism by which the body breaks down clots) and shown to be a cause of hypofibrinolysis. Persistent blood clots can lead to congestive blood flow (hyperemia) in bone marrow, impaired blood flow and ischaemia in bone tissue resulting in lack of oxygen (hypoxia), bone cell damage and eventual cell death (apoptosis). Of significance is the fact that the average concentration of cadmium in human bones in the 20th century has increased to about 10 times above the pre-industrial level.
The first three cases of bisphosphonate-associated osteonecrosis of the jaw were spontaneously reported to the FDA by an oral surgeon in 2002, with the toxicity being described as a potentially late toxicity of chemotherapy. In 2003 and 2004, three oral surgeons independently reported to the FDA information on 104 cancer patients with bisphosphonate-associated osteonecrosis of the jaw seen in their referral practices in California, Florida, and New York. These case series were published as peer-reviewed articles — two in the "Journal of Oral and Maxillofacial Surgery" and one in the "Journal of Clinical Oncology". Subsequently, numerous instances of persons with this ADR were reported to the manufacturers and to the FDA. By December 2006, 3607 cases of people with this ADR had been reported to the FDA and 2227 cases had been reported to the manufacturer of intravenous bisphosphonates.
The International Myeloma Foundation's web-based survey included 1203 respondents, 904 patients with myeloma and 299 with breast cancer and an estimate that after 36 months, osteonecrosis of the jaw had been diagnosed in 10% of 211 patients on zoledronate and 4% of 413 on pamidronate. A population based study in Germany identified more than 300 cases of osteonecrosis of the jaw, 97% occurring in cancer patients (on high-dose intravenous bisphosphonates) and 3 cases in 780,000 patients with osteoporosis for an incidence of 0.00038%. Time to event ranged from 23–39 months and 42–46 months with high dose intravenous and oral bisphosphonates. A prospective, population based study by Mavrokokki "et al.". estimated an incidence of osteonecrosis of the jaw of 1.15% for intravenous bisphosphonates and 0.04% for oral bisphosphonates. Most cases (73%) were precipitated by dental extractions. In contrast, safety studies sponsored by the manufacturer reported bisphosphonate-associated osteonecrosis of the jaw rates that were much lower.
Although the majority of cases of ONJ have occurred in cancer patients receiving high dose intravenous bisphosphonates, almost 800 cases have been reported in oral bisphosphonate users for osteoporosis or Pagets disease. In terms of severity most cases of ONJ in oral bisphosphonate users are stage 1–2 and tend to progress to resolution with conservative measures such as oral chlorhexidine rinses.
Owing to prolonged embedding of bisphosphonate drugs in the bone tissues, the risk for BRONJ is high even after stopping the administration of the medication for several years.
This form of therapy has been shown to prevent loss of bone mineral density (BMD) as a result of a reduction in bone turnover. However, bone health entails quite a bit more than just BMD. There are many other factors to consider.
In healthy bone tissue there is a homeostasis between bone resorption and bone apposition. Diseased or damaged bone is resorbed through the osteoclasts mediated process while osteoblasts form new bone to replace it, thus maintaining healthy bone density. This process is commonly called remodelling.
However, osteoporosis is essentially the result of a lack of new bone formation in combination with bone resorption in reactive hyperemia, related to various causes and contributing factors, and bisphosphonates do not address these factors at all.
In 2011, a proposal incorporating both the reduced bone turnover and the infectious elements of previous theories has been put forward. It cites the impaired functionality of affected macrophages as the dominant factor in the development of ONJ.
In a systematic review of cases of bisphosphonate-associated ONJ up to 2006, it was concluded that the mandible is more commonly affected than the maxilla (2:1 ratio), and 60% of cases are preceded by a dental surgical procedure. According to Woo, Hellstein and Kalmar, oversuppression of bone turnover is probably the primary mechanism for the development of this form of ONJ, although there may be contributing co-morbid factors (as discussed elsewhere in this article). It is recommended that all sites of potential jaw infection should be eliminated before bisphosphonate therapy is initiated in these patients to reduce the necessity of subsequent dentoalveolar surgery. The degree of risk for osteonecrosis in patients taking oral bisphosphonates, such as alendronate (Fosamax), for osteoporosis is uncertain and warrants careful monitoring. Patients taking dexamethasone and other glucocorticoids are at increased risk.
Matrix metalloproteinase 2 may be a candidate gene for bisphosphonate-associated osteonecrosis of the jaw, since it is the only gene known to be associated with bone abnormalities and atrial fibrillation, both of which are side effects of bisphosphonates.
Fibrous dysplasia is a mosaic disease resulting from post-zygotic activating mutations of the "GNAS" locus at 20q13.2-q13.3, which codes for the α subunit of the G G-coupled protein receptor. In bone, constitutive Gα signaling results in impaired differentiation and proliferation of bone marrow stromal cells. Proliferation of these cells causes replacement of normal bone and marrow with fibrous tissue. The bony trabeculae are abnormally thin and irregular, and often likened to Chinese characters (bony spicules on biopsy).
Fibrous dysplasia is not hereditary, and there has never been a case of transmission from parent to child.
Plasmacytomas are a rare form of cancer. SPB is the most common form of the disease and accounts for 3-5% of all plasma cell malignancies. The median age at diagnosis for all plasmacytomas is 55. Both SPB and extramedullary plasmacytoma are more prevalent in males; with a 2:1 male to female ratio for SPB and a 3:1 ratio for extramedullary plasmacytoma.
The main risk factors are bone fractures, joint dislocations, alcoholism, and the use of high dose steroids. Other risk factors include radiation therapy, chemotherapy, and organ transplantation. Osteonecrosis is also associated with cancer, lupus, sickle cell disease, HIV infection, Gaucher’s disease, and Caisson disease. The condition may also occur without any clear reason.
Bisphosphonates are associated with osteonecrosis of the mandible. Prolonged, repeated exposure to high pressures (as experienced by commercial and military divers) has been linked to AVN, though the relationship is not well understood.
Bone marrow suppression also known as myelotoxicity or myelosuppression, is the decrease in production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and/or those responsible for normal blood clotting (thrombocytes). Bone marrow suppression is a serious side effect of chemotherapy and certain drugs affecting the immune system such as azathioprine. The risk is especially high in cytotoxic chemotherapy for leukemia.
Nonsteroidal anti-inflammatory drugs (NSAIDs), in some rare instances, may also cause bone marrow suppression. The decrease in blood cell counts does not occur right at the start of chemotherapy because the drugs do not destroy the cells already in the bloodstream (these are not dividing rapidly). Instead, the drugs affect new blood cells that are being made by the bone marrow. When myelosuppression is severe, it is called myeloablation.
Because the bone marrow is the manufacturing center of blood cells, the suppression of bone marrow activity causes a deficiency of blood cells. This condition can rapidly lead to life-threatening infection, as the body cannot produce leukocytes in response to invading bacteria and viruses, as well as leading to anaemia due to a lack of red blood cells and spontaneous severe bleeding due to deficiency of platelets.
Parvovirus B19 inhibits erythropoiesis by lytically infecting RBC precursors in the bone marrow and is associated with a number of different diseases ranging from benign to severe. In immunocompromised patients, B19 infection may persist for months, leading to chronic anemia with B19 viremia due to chronic marrow suppression.
Most cases of SPB progress to multiple myeloma within 2–4 years of diagnosis, but the overall median survival for SPB is 7–12 years. 30–50% of extramedullary plasmacytoma cases progress to multiple myeloma with a median time of 1.5–2.5 years. 15–45% of SPB and 50–65% of extramedullary plasmacytoma are disease free after 10 years.