Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Iatrogenic causes of pancytopenia include chemotherapy for malignancies if the drug or drugs used cause bone marrow suppression. Rarely, drugs (antibiotics, blood pressure medication, heart medication) can cause pancytopenia.
The antibiotics Linezolid and Chloramphenicol can cause pancytopenia in some individuals.
Rarely, pancytopenia may have other causes, such as mononucleosis, or other viral diseases. Increasingly, HIV is itself a cause for pancytopenia.
- Familial hemophagocytic syndrome
- Aplastic anemia
- Gaucher's disease
- metastatic carcinoma of bone
- Multiple Myeloma
- overwhelming infections
- Lymphoma
- myelofibrosis
- Dyskeratosis congenita
- Myelodysplastic syndrome
- Leukemia
- Leishmaniasis
- Severe Folate or vitamin B12 deficiency
- Systemic lupus erythematosus
- Paroxysmal nocturnal hemoglobinuria (blood test)
- Viral infections (such as HIV, EBV--undetermined virus is most common).
- Alimentary toxic aleukia
- Copper deficiency
- Pernicious anemia
- Medication
- Hypersplenism
- Osteopetrosis
- Organic acidurias (Propionic Acidemia, Methylmalonic Aciduria, Isovaleric Aciduria)
- Low dose arsenic poisoning
- Sako disease (Myelodysplastic-cytosis)
- Chronic radiation sickness
- LIG4 syndrome
Bone marrow failure in both children and adults can be either inherited or acquired. Inherited bone marrow failure is often the cause in young children, while older children and adults may acquire the disease later in life. A maturation defect in genes is a common cause of inherited bone marrow failure. The most common cause of acquired bone marrow failure is aplastic anemia. Working with chemicals such as benzene could be a factor in causing the illness. Other factors include radiation or chemotherapy treatments, and immune system problems.
Myelophthisis can occur in the setting of chronic myeloproliferative disease (e.g. myelofibrosis), leukemia, lymphoma, and metastatic carcinoma or myeloma. It is common in people who have chronic idiopathic myelofibrosis. It has been linked to small-cell lung cancer, breast cancer or prostate cancer that metastasizes to the bone marrow.
Historically, the most common cause of displacement of healthy bone marrow was tuberculosis.
Currently, the most common cause is displacement of bone marrow by metastatic cancer (extramedullary hematopoiesis tends to be modest). Other causes include myeloproliferative disorders (especially late-stage or spent polycythemia vera), granulomatous diseases, and (lipid) storage diseases. Myelofibrosis can occur in all of these.
Factors that may contribute to decreased RBC production include a decreased quantity of functioning hematopoietic tissue, disordered metabolism related to the underlying disorder, and, in some cases, erythrophagocytosis.
The two most common signs and symptoms of bone marrow failure are bleeding and bruising. Blood may be seen throughout the gums, nose or the skin, and tend to last longer than normal. Children have a bigger chance of seeing blood in their urine or stools, which results in digestive problems with an unpleasant scent. Individuals with this condition may also encounter tooth loss or tooth decay. Chronic fatigue, shortness of breath, and recurrent colds can also be symptoms of bone marrow failure.
Some cases of myelophthisis are thought to be related to the release of cytokines that simulate fibroblastic proliferation and fibrosis in the marrow.
Bone marrow suppression due to azathioprine can be treated by changing to another medication such as mycophenolate mofetil (for organ transplants) or other disease-modifying drugs in rheumatoid arthritis or Crohn's disease.
The disease is marked by an inappropriate and ineffective T cell activation that leads to an increased hemophagocytic activity. The T cell activated macrophages engulf erythrocytes, leukocytes, platelets, as well as their progenitor cells. Such finding is common in the syndrome, which is also referred to as hemophagocytic lymphohistiocytosis (HLH). Along with pancytopenia, HLH is characterized by fever, splenomegaly, and hemophagocytosis in bone marrow, liver, or lymph nodes.
The primary sign of myelofibrosis is reactive bone marrow fibrosis, but it is often accompanied by:
- Abdominal fullness related to an enlarged spleen (splenomegaly).
- Bone pain
- Bruising and easy bleeding due to inadequate numbers of platelets
- Cachexia (loss of appetite, weight loss, and fatigue)
- Enlargement of both the liver and spleen
- Fatigue
- Gout and high uric acid levels
- Increased susceptibility to infection, such as pneumonia
- Pallor and shortness of breath due to anemia
- In rarer cases, a raised red blood cell volume
- Cutaneous myelofibrosis is a rare skin condition characterized by dermal and subcutaneous nodules.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
Untreated, severe aplastic anemia has a high risk of death. Modern treatment, by drugs or stem cell transplant, has a five-year survival rate that exceeds 85%, with younger age associated with higher survival.
Survival rates for stem cell transplant vary depending on age and availability of a well-matched donor. Five-year survival rates for patients who receive transplants have been shown to be 82% for patients under age 20, 72% for those 20–40 years old, and closer to 50% for patients over age 40. Success rates are better for patients who have donors that are matched siblings and worse for patients who receive their marrow from unrelated donors.
Older people (who are generally too frail to undergo bone marrow transplants), and people who are unable to find a good bone marrow match, undergoing immune suppression have five-year survival rates of up to 75%.
Relapses are common. Relapse following ATG/ciclosporin use can sometimes be treated with a repeated course of therapy. In addition, 10-15% of severe aplastic anemia cases evolve into MDS and leukemia. According to a study, for children who underwent immunosuppressive therapy, about 15.9% of children who responded to immunosuppressive therapy encountered relapse.
Milder disease can resolve on its own.
Bone marrow suppression also known as myelotoxicity or myelosuppression, is the decrease in production of cells responsible for providing immunity (leukocytes), carrying oxygen (erythrocytes), and/or those responsible for normal blood clotting (thrombocytes). Bone marrow suppression is a serious side effect of chemotherapy and certain drugs affecting the immune system such as azathioprine. The risk is especially high in cytotoxic chemotherapy for leukemia.
Nonsteroidal anti-inflammatory drugs (NSAIDs), in some rare instances, may also cause bone marrow suppression. The decrease in blood cell counts does not occur right at the start of chemotherapy because the drugs do not destroy the cells already in the bloodstream (these are not dividing rapidly). Instead, the drugs affect new blood cells that are being made by the bone marrow. When myelosuppression is severe, it is called myeloablation.
Because the bone marrow is the manufacturing center of blood cells, the suppression of bone marrow activity causes a deficiency of blood cells. This condition can rapidly lead to life-threatening infection, as the body cannot produce leukocytes in response to invading bacteria and viruses, as well as leading to anaemia due to a lack of red blood cells and spontaneous severe bleeding due to deficiency of platelets.
Parvovirus B19 inhibits erythropoiesis by lytically infecting RBC precursors in the bone marrow and is associated with a number of different diseases ranging from benign to severe. In immunocompromised patients, B19 infection may persist for months, leading to chronic anemia with B19 viremia due to chronic marrow suppression.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
Leukocytosis is very common in acutely ill patients. It occurs in response to a wide variety of conditions, including viral, bacterial, fungal, or parasitic infection, cancer, hemorrhage, and exposure to certain medications or chemicals including steroids.
For lung diseases such as pneumonia and tuberculosis, WBC count is very important for the diagnosis of the disease, as leukocytosis is usually present.
The mechanism that causes leukocytosis can be of several forms: an increased release of leukocytes from bone marrow storage pools, decreased margination of leukocytes onto vessel walls, decreased extravasation of leukocytes from the vessels into tissues, or an increase in number of precursor cells in the marrow.
Certain medications, including corticosteroids, lithium and beta agonists, may cause leukocytosis.
Below are blood reference ranges for various types leucocytes/WBCs. The 97.5 percentile (right limits in intervals in image, showing 95% prediction intervals) is a common limit for defining leukocytosis.
Regular full blood counts are required on a regular basis to determine whether the patient is still in a state of remission.
Many patients with aplastic anemia also have clones of cells characteristic of the rare disease paroxysmal nocturnal hemoglobinuria (PNH, anemia with thrombopenia and/or thrombosis), sometimes referred to as AA/PNH. Occasionally PNH dominates over time, with the major manifestation intravascular hemolysis. The overlap of AA and PNH has been speculated to be an escape mechanism by the bone marrow against destruction by the immune system. Flow cytometry testing is performed regularly in people with previous aplastic anemia to monitor for the development of PNH.
This is a rare disease, with less than 100 cases reported. Of these cases, an equal male:female ratio was observed,
with cases typically seen in older adults.
Although not yet formally incorporated in the generally accepted classification systems, molecular profiling of myelodysplastic syndrome genomes has increased the understanding of prognostic molecular factors for this disease. For example, in low-risk MDS, "IDH1" and "IDH2" mutations are associated with significantly worsened survival.
Some people have a history of exposure to chemotherapy (especially alkylating agents such as melphalan, cyclophosphamide, busulfan, and chlorambucil) or radiation (therapeutic or accidental), or both (e.g., at the time of stem cell transplantation for another disease). Workers in some industries with heavy exposure to hydrocarbons such as the petroleum industry have a slightly higher risk of contracting the disease than the general population. Xylene and benzene exposure has been associated with myelodysplasia. Vietnam veterans exposed to Agent Orange are at risk of developing MDS. A link may exist between the development of MDS "in atomic-bomb survivors 40 to 60 years after radiation exposure" (in this case, referring to people who were in close proximity to the dropping of the atomic bomb in Hiroshima and Nagasaki during World War II).
Children with Down syndrome are susceptible to MDS, and a family history may indicate a hereditary form of sideroblastic anemia or Fanconi anemia.
In children, the long bones are usually affected. In adults, the vertebrae and the pelvis are most commonly affected.
Acute osteomyelitis almost invariably occurs in children because of rich blood supply to the growing bones. When adults are affected, it may be because of compromised host resistance due to debilitation, intravenous drug abuse, infectious root-canaled teeth, or other disease or drugs (e.g., immunosuppressive therapy).
Osteomyelitis is a secondary complication in 1–3% of patients with pulmonary tuberculosis. In this case, the bacteria, in general, spread to the bone through the circulatory system, first infecting the synovium (due to its higher oxygen concentration) before spreading to the adjacent bone. In tubercular osteomyelitis, the long bones and vertebrae are the ones that tend to be affected.
"Staphylococcus aureus" is the organism most commonly isolated from all forms of osteomyelitis.
Bloodstream-sourced osteomyelitis is seen most frequently in children, and nearly 90% of cases are caused by "Staphylococcus aureus". In infants, "S. aureus", Group B streptococci (most common) and "Escherichia coli" are commonly isolated; in children from one to 16 years of age, "S. aureus", "Streptococcus pyogenes", and "Haemophilus influenzae" are common. In some subpopulations, including intravenous drug users and splenectomized patients, Gram-negative bacteria, including enteric bacteria, are significant pathogens.
The most common form of the disease in adults is caused by injury exposing the bone to local infection. "Staphylococcus aureus" is the most common organism seen in osteomyelitis, seeded from areas of contiguous infection. But anaerobes and Gram-negative organisms, including "Pseudomonas aeruginosa", "E. coli", and "Serratia marcescens", are also common. Mixed infections are the rule rather than the exception.
Systemic mycotic (fungal) infections may also cause osteomyelitis. The two most common are "Blastomyces dermatitidis" and "Coccidioides immitis".
In osteomyelitis involving the vertebral bodies, about half the cases are due to "S. aureus", and the other half are due to tuberculosis (spread hematogenously from the lungs). Tubercular osteomyelitis of the spine was so common before the initiation of effective antitubercular therapy, it acquired a special name, Pott's disease.
The "Burkholderia cepacia" complex has been implicated in vertebral osteomyelitis in intravenous drug users.
JMML accounts for 1-2% of childhood leukemias each year; in the United States, an estimated 25-50 new cases are diagnosed each year, which also equates to about 3 cases per million children. There is no known environmental cause for JMML. Since about 10% of patients are diagnosed before 3 months of age, it is thought that JMML is a congenital condition in these infants
Myelokathexis is a congenital disorder of the white blood cells that causes severe, chronic leukopenia (a reduction of circulating white blood cells) and neutropenia (a reduction of neutrophil granulocytes). The disorder is believed to be inherited in an autosomal dominant manner. Myelokathexis refers to retention (kathexis) of neutrophils in the bone marrow (myelo). The disorder shows prominent neutrophil morphologic abnormalities.
Myelokathexis is amongst the diseases treated with bone marrow transplantation and cord blood stem cells.
WHIM syndrome is a very rare variant of severe congenital neutropenia that presents with warts, hypogammaglobunemia, infections, and myelokathexis. A gain in function mutation resulting in a truncated form of CXCR4 is believe to be its cause.
There have been few individual epidemiological studies of CMML, due to the difficulty in the disease classification. CMML has an estimated incidence of less than 1 per 100,000 persons per year.
The median age of diagnosis is 65–75. CMML has a propensity for males rather than females, at a ratio of 1.5–3:1.
The main risk factors are bone fractures, joint dislocations, alcoholism, and the use of high dose steroids. Other risk factors include radiation therapy, chemotherapy, and organ transplantation. Osteonecrosis is also associated with cancer, lupus, sickle cell disease, HIV infection, Gaucher’s disease, and Caisson disease. The condition may also occur without any clear reason.
Bisphosphonates are associated with osteonecrosis of the mandible. Prolonged, repeated exposure to high pressures (as experienced by commercial and military divers) has been linked to AVN, though the relationship is not well understood.
Other factors such as toxicants can adversely impact bone cells. Infections, chronic or acute, can affect blood flow by inducing platelet activation and aggregation, contributing to a localized state of excess coagulability (hypercoagulability) that may contribute to clot formation (thrombosis), a known cause of bone infarct and ischaemia. Exogenous estrogens, also called hormonal disruptors, have been linked with an increased tendency to clot (thrombophilia) and impaired bone healing.
Heavy metals such as lead and cadmium have been implicated in osteoporosis. Cadmium and lead promotes the synthesis of plasminogen activator inhibitor-1 (PAI-1) which is the major inhibitor of fibrinolysis (the mechanism by which the body breaks down clots) and shown to be a cause of hypofibrinolysis. Persistent blood clots can lead to congestive blood flow (hyperemia) in bone marrow, impaired blood flow and ischaemia in bone tissue resulting in lack of oxygen (hypoxia), bone cell damage and eventual cell death (apoptosis). Of significance is the fact that the average concentration of cadmium in human bones in the 20th century has increased to about 10 times above the pre-industrial level.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.