Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common cause of a ruptured spleen is blunt abdominal trauma, such as in traffic collisions or sports accidents. Direct, penetrating injuries, for example, stab or gunshot wounds are rare.
Non-traumatic causes are less common. These include infectious diseases, medical procedures such as colonoscopy, haematological diseases, medications, and pregnancy.
In less than one percent of cases of infectious mononucleosis splenic rupture may occur.
The spleen is an organ in the left upper quadrant of the abdomen that filters blood by removing old or damaged blood cells and platelets. While not essential to sustain life, the spleen performs protective immunological functions in the body. It also helps the immune system by destroying bacteria and other foreign substances by opsonization and phagocytosis, and by producing antibodies. It also stores approximately 33 percent of all platelets in the body.
Blunt splenic trauma most often occurs in automobile accident victims, in which it is a leading cause of internal bleeding. However, any type of major impact directed to the spleen may cause splenic trauma. This can happen in bicycling accidents, when the handlebar is forced into the left subcostal margin, and into the spleen. The degree of injury ranges from subcapsular hematoma, to splenic rupture.
Blunt splenic trauma occurs when a significant impact to the spleen from some outside source (i.e. automobile accident) damages or ruptures the spleen. Treatment varies depending on severity, but often consists of embolism or splenectomy.
Causes include
- Acute pancreatitis, whereby methemalbumin formed from digested blood tracks subcutaneously around the abdomen from the inflamed pancreas.
- Pancreatic hemorrhage
- Retroperitoneal hemorrhage
- Blunt abdominal trauma
- Ruptured / hemorrhagic ectopic pregnancy.
- Spontaneous bleeding secondary to coagulopathy (congenital or acquired)
- Aortic rupture, from ruptured abdominal aortic aneurysm or other causes.
A liver injury, also known as liver laceration, is some form of trauma sustained to the liver. This can occur through either a blunt force such as a car accident, or a penetrating foreign object such as a knife. Liver injuries constitute 5% of all traumas, making it the most common abdominal injury. Generally nonoperative management and observation is all that is required for a full recovery.
Given its anterior position in the abdominal cavity and its large size, it is prone to gun shot wounds and stab wounds. Its firm location under the diaphragm also makes it especially prone to shearing forces. Common causes of this type of injury are blunt force mechanisms such as motor vehicle accidents, falls, and sports injuries. Typically these blunt forces dissipate through and around the structure of the liver. A large majority of people who sustain this injury also have another accompanying injury.
Several factors may increase the tendency for clot formation, such as specific infections (such as infectious mononucleosis, cytomegalovirus infection, malaria, or babesiosis), inherited clotting disorders (thrombophilia, such as Factor V Leiden, antiphospholipid syndrome), malignancy (such as pancreatic cancer) or metastasis, or a combination of these factors.
In some conditions, blood clots form in one part of the circulatory system and then dislodge and travel to another part of the body, which could include the spleen. These emboligenic disorders include atrial fibrillation, patent foramen ovale, endocarditis or cholesterol embolism.
Splenic infarction is also more common in hematological disorders with associated splenomegaly, such as the myeloproliferative disorders. Other causes of splenomegaly (for example, Gaucher disease or hemoglobinopathies) can also predispose to infarction. Splenic infarction can also result from a sickle cell crisis in patients with sickle cell anemia. Both splenomegaly and a tendency towards clot formation feature in this condition. In sickle cell disease, repeated splenic infarctions lead to a non-functional spleen (autosplenectomy).
Any factor that directly compromises the splenic artery can cause infarction. Examples include abdominal traumas, aortic dissection, torsion of the splenic artery (for example, in wandering spleen) or external compression on the artery by a tumor. It can also be a complication of vascular procedures.
Splenic infarction can be due to vasculitis or disseminated intravascular coagulation. Various other conditions have been associated with splenic infarction in case reporters, for example granulomatosis with polyangiitis or treatment with medications that predispose to vasospasm or blood clot formation, such as vasoconstrictors used to treat esophageal varices, sumatriptan or bevacizumab.
Causes include:
- acute pancreatitis, where methemalbumin formed from digested blood tracks around the abdomen from the inflamed pancreas
- bleeding from blunt abdominal trauma
- bleeding from aortic rupture
- bleeding from ruptured ectopic pregnancy
Importance of the sign is on a decline since better diagnostic modalities are now available.
When there is no pancreatic duct injury, typically hemostasis and surgical drainage are the main form of treatment. Surgical repair is undertaken when there is evidence or suspicion of ductal injury. The type of surgery depends on the degree of the injury and its proximity to the mesenteric blood vessels that serve the pancreas. When injuries are not close to the mesenteric vessels, a distal pancreatectomy may be done; this procedure preserves much of the pancreas and usually avoids loss of its endocrine and exocrine functions. In severe cases of pancreaticoduodenal injury, a pancreaticoduodenectomy can be used. Common complications after surgery include pancreatitis, pancreatic fistula, abscess, and pseudocyst formation. Initial management of hemorrhage includes controlling it by packing the wound.
Diaphragmatic injuries are present in 1–7% of people with significant blunt trauma and an average of 3% of abdominal injuries.
A high body mass index may be associated with a higher risk of diaphragmatic rupture in people involved in vehicle accidents. It is rare for the diaphragm alone to be injured, especially in blunt trauma; other injuries are associated in as many as 80–100% of cases. In fact, if the diaphragm is injured, it is an indication that more severe injuries to organs may have occurred. Thus, the mortality after a diagnosis of diaphragmatic rupture is 17%, with most deaths due to lung complications. Common associated injuries include head injury, injuries to the aorta, fractures of the pelvis and long bones, and lacerations of the liver and spleen. Associated injuries occur in over three quarters of cases.
Splenic infarction can be induced for the treatment of such conditions as portal hypertension or splenic injury. It can also be used prior to splenectomy for the prevention of blood loss.
A significant complication of diaphragmatic rupture is traumatic diaphragmatic herniation: organs such as the stomach that herniate into the chest cavity and may be strangulated, losing their blood supply. Herniation of abdominal organs is present in 3–4% of people with abdominal trauma who present to a trauma center.
Death occurs immediately after traumatic rupture of the thoracic aorta 75%–90% of the time since bleeding is so severe, and 80–85% of patients die before arriving at a hospital. Of those who live to reach a hospital, 23% die at the time of or shortly after arrival. In the US, an estimated 7,500–8,000 cases occur yearly, of which 1,000–1,500 make it to a hospital alive; these low numbers make it difficult to estimate the efficacy of surgical options. However, if surgery is performed in time, it can offer a chance of survival.
Though there is a concern that a small, stable tear in the aorta could enlarge and cause complete rupture of the aorta and heavy bleeding, this may be less common than previously believed as long as the patient's blood pressure does not get too high.
A pancreatic injury is some form of trauma sustained by the pancreas. The injury can be sustained through either blunt forces, such as a motor vehicle accident, or penetrative forces, such as that of a gunshot wound. The pancreas is one of the least commonly injured organs in abdominal trauma.
Grey Turner's sign refers to bruising of the s, the part of the body between the last rib and the top of the hip. The bruising appears as a blue discoloration, and is a sign of retroperitoneal hemorrhage, or bleeding behind the peritoneum, which is a lining of the abdominal cavity. Grey Turner's sign takes 24–48 hours to develop, and can predict a severe attack of acute pancreatitis.
Grey Turner's sign may be accompanied by Cullen's sign. Both signs may be indicative of pancreatic necrosis with retroperitoneal or intraabdominal bleeding. Grey Turner's sign is named after British surgeon George Grey Turner.
Cullen's sign is superficial edema and bruising in the subcutaneous fatty tissue around the umbilicus.
It is named for gynecologist Thomas Stephen Cullen (1869–1953), who first described the sign in ruptured ectopic pregnancy in 1916.
This sign takes 24–48 hours to appear and can predict acute pancreatitis, with mortality rising from 8–10% to 40%. It may be accompanied by Grey Turner's sign (bruising of the flank), which may then be indicative of pancreatic necrosis with retroperitoneal or intraabdominal bleeding.
Exsanguination is a relatively uncommon cause of death in human beings. Traumatic injury can cause exsanguination if bleeding is not promptly controlled, and is the most common cause of death in military combat. Non-combat causes can include gunshot or stab wounds; motor vehicle crash injuries; suicide by severing arteries, typically those in the wrists; and partial or total limb amputation, such as via accidental contact with a circular or chain saw, or becoming entangled in operating machinery.
Patients can also develop catastrophic internal hemorrhages, such as from a bleeding peptic ulcer, postpartum bleeding or splenic hemorrhage, which can cause exsanguination without any external signs of distress. Another cause of exsanguination in the medical field is that of aneurysms. If a dissecting aortic aneurysm ruptures through the adventitia, massive hemorrhage and exsanguination can result in a matter of minutes.
Blunt force trauma to the liver, kidneys, and spleen can cause severe internal bleeding as well, though the abdominal cavity usually becomes visibly darkened as if bruised. Similarly, trauma to the lungs can cause bleeding out, though without medical attention, blood can fill the lungs causing the effect of drowning, or in the pleura causing suffocation, well before exsanguination would occur. In addition, serious trauma can cause tearing of major blood vessels without external trauma indicative of the damage.
Alcoholics and others with liver disease can also suffer from exsanguination. Thin-walled, normally low pressure dilated veins just below the lower esophageal mucosa called esophageal varices can become enlarged in conditions with portal hypertension. These may begin to bleed, which with the high pressure in the portal system can be fatal. The often causative impaired liver function also reduces the availability of clotting factors (many of which are made in the liver), making any rupture in vessels more likely to cause a fatal loss of blood.
The outlook is generally based on the severity of the infection. It is however a severe complication which may result in the death of the patient if the appropriate treatment is not administered. Patients are at risk of sepsis and multiple organ failure and in cases in which the infected abscess is not removed through surgery, the mortality rate can reach 100%.
Pancreatic abscesses usually develop in patients with pancreatic pseudocysts that become infected. They may also form as a result of fibrous wall formation around fluid collections or penetrating peptic ulcers. Other causes include gall stones or alcohol consumption and, in rare cases, drugs, blunt trauma and following extension abscess from nearby structures.
Complications are likely to result in cases of excess blood loss or punctures to certain organs, possibly leading to shock. Swelling and bruising may result, more so in high-impact injuries. Pain in the affected areas may differ where severity of impact increases its likelihood and may radiate if symptoms are aggravated when one moves around.
The injury is usually caused by high speed impacts such as those that occur in vehicle collisions and serious falls. It may be due to different rates of deceleration of the heart and the aorta, which is in a fixed position.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Hemosuccus pancreaticus is a rare entity, and estimates of its rate are based on small case series. It is the least frequent cause of upper gastrointestinal bleeding (1/1500) and is most often caused by chronic pancreatitis, pancreatic pseudocysts, or pancreatic tumors. As a result, the diagnosis may easily be overlooked. The usual presentation of hemosuccus is the development of symptoms of upper or lower gastrointestinal bleeding, such as melena (or dark, black tarry stools), maroon stools, or hematochezia, which is frank rectal bleeding. The source of hemorrhage is usually not determined by standard endoscopic techniques, and the symptoms of the condition are usually grouped as a cause of obscure overt gastrointestinal hemorrhage. Over one-half of patients with hemosuccus also develop abdominal pain, usually located in the epigastrium, or uppermost part of the abdomen. The pain is described as being "crescendo-decrescendo" in nature, meaning that it increases and decreases in intensity slowly with time. This is thought to be due to transient blockage of the pancreatic duct from the source of bleeding, or from clots. If the source of the bleeding also involves obstruction of the common bile duct (such as with some tumours of the head of the pancreas), the patient may develop jaundice, or "silver stools", an uncommon finding of acholic stools mixed with blood.
The causes of hemosuccus pancreaticus can be grouped into diseases of the pancreas and diseases of the vascular structures around the pancreas. Diseases of the pancreas include acute and chronic pancreatitis, pancreatic cancer, pancreatic duct stones, ruptured aneurysms of the splenic artery, and pseudoaneurysms of the splenic artery and hepatic artery. Pseudoaneurysms are complications of pancreatitis where a pseudocyst is formed, with one wall abutting an artery, usually the splenic artery. Should the arterial wall rupture, the pseudoaneurysm will hemorrhage into the pancreatic duct.
Rarely the bleeding is not channeled into the bowel from the main pancreatic duct (or "duct of Wirsung"), but rather comes from the accessory pancreatic duct (or "duct of Santorini"). The former is termed "Wirsungorrhage" and the latter is termed "Santorinirrhage". Bleeding from the duct of Santorini can be caused by pancreas divisum, a possible congenital cause of pancreatitis.