Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Blood squirt (blood spurt, blood spray, blood gush, or blood jet) is the effect when an artery, a blood vessel in the human body (or other organism's body) is cut. Blood pressure causes the blood to bleed out at a rapid, intermittent rate, in a spray or jet, coinciding with the beating of the heart, rather than the slower, but steady flow of venous bleeding. Also known as arterial bleeding, arterial spurting, or arterial gushing, the amount of blood loss can be copious, occur very rapidly, and can lead to death.
In cut carotid arteries with 100 mL of blood through the heart at each beat (at 65 beats a minute), a completely severed artery will spurt blood for about 30 seconds and the blood will not spurt much higher than the human head. If the artery is just nicked, on the other hand, the blood will spurt longer but will be coming out under pressure and spraying much further.
To prevent hand ischemia, there is a "squirt test" that involves squirting blood from the radial artery, which is used in intraoperative assessment of collateral arm blood flow before radial artery harvest.
In 1933, a murder trial prompted a testimony from Dr. Clement Harrisse Arnold about how far blood could spurt from the neck: 6 inches (ca. 15 cm) vertically and 18 inches (ca. 46 cm) laterally.
Hematidrosis is a condition in which capillary blood vessels that feed the sweat glands rupture, causing them to exude blood, occurring under conditions of extreme physical or emotional stress. Severe mental anxiety activates the sympathetic nervous system to invoke the stress-fight or flight reaction to such a degree as to cause hemorrhage of the vessels supplying the sweat glands into the ducts of the sweat glands. It has been suggested that acute fear and extreme stress can cause hematidrosis.
Hematidrosis, also called blood sweat, is a very rare condition in which a human sweats blood. The term is from Greek "haima/haimatos" αἷμα, αἵματος meaning blood and "hidrōs" ἱδρώς meaning sweat.
Hypovolemia is a state of decreased blood volume; more specifically, decrease in volume of blood plasma. It is thus the intravascular component of volume contraction (or loss of blood volume due to things such as bleeding or dehydration), but, as it also is the most essential one, "hypovolemia" and volume contraction are sometimes used synonymously.
Hypovolemia is characterized by sodium depletion (salt depletion) and thus differs from dehydration, which is defined as excessive loss of body water.
Smoking does not directly cause high blood pressure. However it is a known risk factor for other serious cardiovascular disease.
Common causes of hypovolemia are
- Loss of blood (external or internal bleeding or blood donation)
- Loss of plasma (severe burns and lesions discharging fluid)
- Loss of body sodium and consequent intravascular water; e.g. diarrhea or vomiting
Excessive sweating is not a cause of hypovolemia, because the body eliminates significantly more water than sodium.
White coat hypertension, more commonly known as white coat syndrome, is a phenomenon in which patients exhibit a blood pressure level above the normal range, in a clinical setting, though they don't exhibit it in other settings. It is believed that the phenomenon is due to anxiety that those afflicted experience during a clinic visit.
The patient's daytime ambulatory blood pressure is used as a reference as it takes into account ordinary levels of daily stress. Many problems have been incurred in the diagnosis and treatment of white coat hypertension.
The term "masked hypertension" can be used to describe the contrasting phenomenon, where a patient's blood pressure is above the normal range during daily living, although it isn't above the normal range when the patient is in a clinic setting.
It has been suggested that vitamin D deficiency is associated with cardiovascular risk factors. It has been observed that individuals with a vitamin D deficiency have higher systolic and diastolic blood pressures than average. Vitamin D inhibits renin secretion and its activity, it therefore acts as a "negative endocrine regulator of the renin-angiotensin system". Hence, a deficiency in vitamin D leads to an increase in renin secretion. This is one possible mechanism of explaining the observed link between hypertension and vitamin D levels in the blood plasma.
Also, some authorities claim that potassium might both prevent and treat hypertension.
Circulatory shock, commonly known as shock, is a life-threatening medical condition of low blood perfusion to tissues resulting in cellular injury and inadequate tissue function. The typical signs of shock are low blood pressure, rapid heart rate, signs of poor end-organ perfusion (i.e., low urine output, confusion, or loss of consciousness), and weak pulses.
The shock index (SI), defined as heart rate divided by systolic blood pressure, is an accurate diagnostic measure that is more useful than hypotension and tachycardia in isolation. Under normal conditions, a number between 0.5 and 0.8 is typically seen. Should that number increase, so does suspicion of an underlying state of shock. Blood pressure alone may not be a reliable sign for shock, as there are times when a person is in circulatory shock but has a stable blood pressure.
Circulatory shock is not related to the emotional state of shock. Circulatory shock is a life-threatening medical emergency and one of the most common causes of death for critically ill people. Shock can have a variety of effects, all with similar outcomes, but all relate to a problem with the body's circulatory system. For example, shock may lead to hypoxemia (a lack of oxygen in arterial blood) or cardiac and/or respiratory arrest.
One of the key dangers of shock is that it progresses by a positive feedback mechanism. Poor blood supply leads to cellular damage, which results in an inflammatory response to increase blood flow to the affected area. This is normally very useful to match up blood supply level with tissue demand for nutrients. However, if enough tissue causes this, it will deprive vital nutrients from other parts of the body. Additionally, the ability of the circulatory system to meet this increase in demand causes saturation, and this is a major result, of which other parts of the body begin to respond in a similar way; thus, exacerbating the problem. Due to this chain of events, immediate treatment of shock is critical for survival.
It is known that diabetes causes changes to factors associated with coagulation and clotting, however not much is known of the risk of thromboembolism, or clots, in diabetic patients. There are some studies that show that diabetes increases the risk of thromboembolism; other studies show that diabetes does not increase the risk of thromboembolism. A study conducted in the Umea University Hospital, in Sweden, observed patients that were hospitalized due to an thromboembolism from 1997 to 1999. The researchers had access to patient information including age, sex, vein thromboembolism diagnosis, diagnostic methods, diabetes type and medical history. This study concluded that there is, in fact, an increased risk of thromboembolism development in diabetic patients, possibly due to factors associated with diabetes or diabetes itself. Diabetic patients are twice as likely to develop a thromboembolism than are non-diabetic patient. The exact mechanism of how diabetes increases the risk of clot formation remains unclear and could possibly be a future direction for study.
From previous studies, it is known that long distance air travel is associated with high risk of venous thrombosis. Long periods of inactivity in a limited amount of space may be a reason for the increased risk of blood clot formation. In addition, bent knees compresses the vein behind the knee (the popliteal vein) and the low humidity, low oxygen, high cabin pressure and consumption of alcohol concentrate the blood. A recent study, published in the British Journal of Haematology in 2014, determined which groups of people, are most at risk for developing a clot during or after a long flight. The study focused on 8755 frequent flying employees from international companies and organizations. It found that travelers who have recently undergone a surgical procedure or who have a malignant disease such as cancer or who are pregnant are most at risk. Preventative measures before flying may be taken in these at-risk groups as a solution.
Patients who have undergone kidney transplant have a high risk of developing RVT (about 0.4% to 6%). RVT is known to account for a large proportion of transplanted kidney failures due to technical problems (damage to the renal vein), clotting disorders, diabetes, consumption of ciclosporin or an unknown problem. Patients who have undergone a kidney transplant are commonly prescribed ciclosporin, an immunosuppressant drug which is known to reduce renal blood flow, increase platelet aggregation in the blood and cause damage to the endothelial tissue of the veins. In a clinical study conducted by the Nuffield Department of Surgery at the Oxford Transplant Centre, UK, transplant patients were given low doses of aspirin, which has a some anti-platelet activity. There is risk of bleeding in transplant patients when using anticoagulants like warfarin and herapin. Low dosage of aspirin was used as an alternative. The study concluded that a routine low-dose of aspirin in kidney transplant patients who are also taking ciclosporin significantly reduces the risk of RVT development.
Haemorrhagic shock occurs in about 1–2% of trauma cases. Up to one-third of people admitted to the intensive care unit (ICU) are in circulatory shock.
Orthostatic hypotension may be caused by low blood volume, resulting from bleeding, the excessive use of diuretics, vasodilators, or other types of drugs, dehydration, or prolonged bed rest(immobility); as well as occurring in people with anemia.
Perioperative PION patients have a higher prevalence of cardiovascular risk factors than in the general population. Documented cardiovascular risks in people affected by perioperative PION include high blood pressure, diabetes mellitus, high levels of cholesterol in the blood, tobacco use, abnormal heart rhythms, stroke, and obesity. Men are also noted to be at higher risk, which is in accordance with the trend, as men are at higher risk of cardiovascular disease. These cardiovascular risks all interfere with adequate blood flow, and also may suggest a contributory role of defective vascular autoregulation.
The causes of nosebleeds can generally be divided into two categories, local and general factors, although a significant number of nosebleeds occur with no obvious cause.
The disorder may be associated with Addison's disease, atherosclerosis (build-up of fatty deposits in the arteries), diabetes, pheochromocytoma, porphyria, and certain neurological disorders, including multiple system atrophy and other forms of dysautonomia. It is also associated with Ehlers–Danlos syndrome and anorexia nervosa. It is also present in many patients with Parkinson's disease resulting from sympathetic denervation of the heart or as a side-effect of dopaminomimetic therapy. This rarely leads to fainting unless the person has developed true autonomic failure or has an unrelated heart problem.
Another disease, dopamine beta hydroxylase deficiency, also thought to be underdiagnosed, causes loss of sympathetic noradrenergic function and is characterized by a low or extremely low levels of norepinephrine, but an excess of dopamine.
Quadriplegics and paraplegics also might experience these symptoms due to multiple systems' inability to maintain a normal blood pressure and blood flow to the upper part of the body.
In general, individuals with white coat hypertension have lower morbidity than patients with sustained hypertension, but higher morbidity than the clinically normotensive.
However, it should be remembered that all the established published trials on the consequences of high blood pressure and the benefits of treating are based on one-time measurement in clinical settings rather than the generally slightly lower readings obtained from ambulatory recordings.
The debate and conflicting ideas revolve around whether or not it would be feasible to treat white coat hypertension, as there still is no conclusive evidence that a temporary rise in blood pressure during office visits has an adverse effect on health.
In fact, many cross sectional studies have shown that "target-organ damage (as exemplified by left ventricular hypertrophy) is less in white-coat hypertensive patients than in sustained hypertensive patients even after the allowance has been made for differences in clinic pressure". Many believe that patients with "white coat" hypertension do not require even very small doses of antihypertensive therapy as it may result in hypotension, but must still be careful as patients may show signs of vascular changes and may eventually develop hypertension. Even patients with established hypertension that is well-controlled based on home blood pressure monitoring may experience elevated readings during office visits.
Blood phobia is often caused by direct or vicarious trauma in childhood or adolescence. Though some have suggested a possible genetic link, a study of twins suggests that social learning and traumatic events, rather than genetics, is of greater significance.
The inclusion of “blood-injury phobia” within the category of specific or simple phobias in classificatory systems reflects a perception that fear has a primary role in the disorder. Consistent with this assumption, blood-injury phobia appears to share a common etiology with other phobias. Kendler, Neale, Kessler, Heath, and Eaves (1992) have argued from data comparing monozygotic with dizygotic twins that the genetic factor common to all phobias (agoraphobia, social phobia, and specific phobias), strongly predisposes a person to specific phobias.
The recognition of an inherited vulnerability common to all phobias is consistent with the notion that elevated trait anxiety predisposes one to anxiety disorders. Trait anxiety provides a background of affective arousal that permits a more rapid activation of the fight or flight response. With respect to specific activating events, conditioning is one way that stimuli become able to elicit anxiety (Rachman, 1991).
Accordingly, painful experiences can condition fear to blood-injury stimuli. Investigators typically classify around 60% of self-reported onsets of blood-injury phobia as beginning with conditioning experiences (Ost, 1991; Ost,
1992; Ost & Hugdahl, 1985; Thyer et al., 1985). However, examinations of available case-by-case verbal summaries call into question the conclusion that conditioning episodes are as prevalent as reported (see Mattick, Page, & Lampe, in press). For example, Thyer et al. (1985) identified a conditioning episode when a “patient received an injection at age 13 and fainted” (p. 455), and in another person when ‘at age six she heard her elementary school teacher give a talk on the circulatory system. This frightened the patient to the
point of syncope” (Thyer et al., 1988.)
Reactive hyperaemia or venous hyperemia is the transient increase in organ blood flow that occurs following a brief period of ischaemia. Following ischaemia there will be a shortage of oxygen and a build-up of metabolic waste.
This is commonly tested in the legs using Buerger's test.
Reactive hyperaemia often occurs as a consequence of Raynaud's phenomenon, where the vasospasm in the vasculature leads to ischaemia and necrosis of tissue and thus a subsequent increase in blood flow to remove the waste products and clear up cell debris.
A nosebleed, also known as epistaxis, is the common occurrence of bleeding from the nose. It is usually noticed when the blood drains out through the nostrils.
There are two types: anterior (the most common), and posterior (less common, more likely to require medical attention). Sometimes in more severe cases, the blood can come up the nasolacrimal duct and out from the eye. Fresh blood and clotted blood can also flow down into the stomach and cause nausea and vomiting.
Although the sight of large amounts of blood can be alarming and may warrant medical attention, nosebleeds are rarely fatal, accounting for only 4 of the 2.4 million deaths in the U.S. in 1999. About 60% of people have a nosebleed at some point in their life. About 10% of nosebleeds are serious.
Low blood pressure can be caused by low blood volume, hormonal changes, widening of blood vessels, medicine side effects, anemia, heart problems or endocrine problems.
Reduced blood volume, hypovolemia, is the most common cause of hypotension. This can result from hemorrhage; insufficient fluid intake, as in starvation; or excessive fluid losses from diarrhea or vomiting. Hypovolemia is often induced by excessive use of diuretics. Low blood pressure may also be attributed to heat stroke. The body may have enough fluid but does not retain electrolytes. Absence of perspiration, light headedness and dark coloured urine are also indicators.
Other medications can produce hypotension by different mechanisms. Chronic use of alpha blockers or beta blockers can lead to hypotension. Beta blockers can cause hypotension both by slowing the heart rate and by decreasing the pumping ability of the heart muscle.
Decreased cardiac output despite normal blood volume, due to severe congestive heart failure, large myocardial infarction, heart valve problems, or extremely low heart rate (bradycardia), often produces hypotension and can rapidly progress to cardiogenic shock. Arrhythmias often result in hypotension by this mechanism.
Some heart conditions can lead to low blood pressure, including extremely low heart rate (bradycardia), heart valve problems, heart attack and heart failure. These conditions may cause low blood pressure because they prevent the body from being able to circulate enough blood.
Excessive vasodilation, or insufficient constriction of the resistance blood vessels (mostly arterioles), causes hypotension. This can be due to decreased sympathetic nervous system output or to increased parasympathetic activity occurring as a consequence of injury to the brain or spinal cord or of dysautonomia, an intrinsic abnormality in autonomic system functioning. Excessive vasodilation can also result from sepsis, acidosis, or medications, such as nitrate preparations, calcium channel blockers, or AT1 receptor antagonists (Angiotensin II acts on AT1 receptors). Many anesthetic agents and techniques, including spinal anesthesia and most inhalational agents, produce significant vasodilation.
Meditation, yoga, or other mental-physiological disciplines may reduce hypotensive effects.
Lower blood pressure is a side effect of certain herbal medicines, which can also interact with hypotensive medications. An example is the theobromine in "Theobroma cacao", which lowers blood pressure through its actions as both a vasodilator and a diuretic, and has been used to treat high blood pressure.
Although this hypothesis is well known among clinicians and individuals with diabetes, there is little scientific evidence to support it. Clinical studies indicate that a high fasting glucose in the morning is more likely because the insulin given on the previous evening fails to last long enough. Studies from 2007 onwards using continuous glucose monitoring show that a high glucose in the morning is not preceded by a low glucose during the night. Furthermore, many individuals with hypoglycemic episodes during the night don't wake due to a failure of release of epinephrine during nocturnal hypoglycemia. Thus, Somogyi's theory is not assured and may be refuted.
Hypotension is low blood pressure, especially in the arteries of the systemic circulation. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. A systolic blood pressure of less than 90 millimeters of mercury (mm Hg) or diastolic of less than 60 mm Hg is generally considered to be hypotension. However, in practice, blood pressure is considered too low only if noticeable symptoms are present.
Hypotension is the opposite of hypertension, which is high blood pressure. It is best understood as a physiological state, rather than a disease. Severely low blood pressure can deprive the brain and other vital organs of oxygen and nutrients, leading to a life-threatening condition called shock.
For some people who exercise and are in top physical condition, low blood pressure is a sign of good health and fitness.
For many people, excessively low blood pressure can cause dizziness and fainting or indicate serious heart, endocrine or neurological disorders.
Treatment of hypotension may include the use of intravenous fluids or vasopressors. When using vasopressors, trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
Chronic Somogyi rebound is a contested explanation of phenomena of elevated blood sugars in the morning. Also called the Somogyi effect and posthypoglycemic hyperglycemia, it is a rebounding high blood sugar that is a response to low blood sugar. When managing the blood glucose level with insulin injections, this effect is counter-intuitive to insulin users who experience high blood sugar in the morning as a result of an overabundance of insulin at night.
This theoretical phenomenon was named after Michael Somogyi, a Hungarian-born professor of biochemistry at the Washington University and Jewish Hospital of St. Louis, who prepared the first insulin treatment given to a child with diabetes in the USA in October 1922. Somogyi showed that excessive insulin makes diabetes unstable and first published his findings in 1938.
Compare with the dawn phenomenon, which is a morning rise in blood sugar in response to waning insulin and a growth hormone surge (that further antagonizes insulin).
Functional hyperaemia is an increase in blood flow to a tissue due to the presence of metabolites and a change in general conditions. When a tissue increases activity there is a well-characterized fall in the partial pressure of oxygen and pH, an increase in partial pressure of carbon dioxide, and a rise in temperature and the concentration of potassium ions. The mechanisms of vasodilation are predominantly local metabolites and myogenic effects. Increased metabolic activity of the tissue leads to a local increase in the extracellular concentration of such chemicals as adenosine, carbon dioxide, and lactic acid, and a decrease in oxygen and pH. These changes cause significant vasodilation. The reverse occurs when metabolic activity is slowed and these substances wash out of the tissues. The myogenic effect refers to the inherent attempt of vascular smooth muscle surrounding arterioles and arteries to maintain the tension in the wall of these blood vessels by dilating when internal pressure is reduced and to constrict when wall tension increases.