Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Causes can be:
- Mallory-Weiss syndrome: bleeding tears in the esophagal mucosa, usually caused by prolonged and vigorous retching.
- Irritation or erosion of the lining of the esophagus or stomach
- Vomiting of ingested blood after hemorrhage in the oral cavity, nose or throat
- Vascular malfunctions of the gastrointestinal tract, such as bleeding gastric varices or intestinal varices
- Tumors of the stomach or esophagus.
- Radiation poisoning
- Viral hemorrhagic fevers
- Gastroenteritis
- Gastritis
- Peptic ulcer
- Chronic viral hepatitis
- Intestinal schistosomiasis (caused by the parasite "Schistosoma mansoni")
- History of smoking
- Iatrogenic injury (invasive procedure such as endoscopy or transesophageal echocardiography)
- Zollinger–Ellison syndrome (severe peptic ulcer)
- Atrio-oesophageal fistula
- Yellow fever
Lymphangitis is an inflammation or an infection of the lymphatic channels that occurs as a result of infection at a site distal to the channel. The most common cause of lymphangitis in humans is "Streptococcus pyogenes" (Group A strep), although it can also be caused by the fungus "Sporothrix schenckii". Lymphangitis is sometimes mistakenly called "blood poisoning". In reality, "blood poisoning" is synonymous with "sepsis".
Signs and symptoms include a deep reddening of the skin, warmth, lymphadenitis (inflammation of a lymphatic gland), and a raised border around the affected area. The person may also have chills and a high fever along with moderate pain and swelling. A person with lymphangitis should be hospitalized and closely monitored by medical professionals.
Lymphangitis is the inflammation of the lymphatic vessels and channels. This is characterized by certain inflammatory conditions of the skin caused by bacterial infections. Thin red lines may be observed running along the course of the lymphatic vessels in the affected area, accompanied by painful enlargement of the nearby lymph nodes.
When the inferior limbs are affected, the redness of the skin runs over the great saphenous vein location and confusion can be made with a thrombophlebitis.
Chronic lymphangitis is a cutaneous condition that is the result of recurrent bouts of acute bacterial lymphangitis.
Hematemesis or haematemesis is the vomiting of blood. The source is generally the upper gastrointestinal tract, typically above the suspensory muscle of duodenum. Patients can easily confuse it with hemoptysis (coughing up blood), although the latter is more common. Hematemesis "is always an important sign".
Many over-the-counter and prescription-only medications contain paracetamol. Because of its wide availability paired with comparably high toxicity, (compared to ibuprofen and aspirin) there is a much higher potential for overdose. Paracetamol toxicity is one of the most common causes of poisoning worldwide. In the United States, the United Kingdom, Australia, and New Zealand, paracetamol is the most common cause of drug overdoses. Additionally, in both the United States and the United Kingdom it is the most common cause of acute liver failure.
In England and Wales an estimated 41,200 cases of paracetamol poisoning occurred in 1989 to 1990, with a mortality of 0.40%. It is estimated that 150 to 200 deaths and 15 to 20 liver transplants occur as a result of poisoning each year in England and Wales. Paracetamol overdose results in more calls to poison control centers in the US than overdose of any other pharmacological substance, accounting for more than 100,000 calls, as well as 56,000 emergency room visits, 2,600 hospitalizations, and 458 deaths due to acute liver failure per year. A study of cases of acute liver failure between November 2000 and October 2004 by the Centers for Disease Control and Prevention in the USA found that paracetamol was the cause of 41% of all cases in adults, and 25% of cases in children.
The mortality rate from paracetamol overdose increases two days after the ingestion, reaches a maximum on day four, and then gradually decreases. Acidosis is the most important single indicator of probable mortality and the need for transplantation. A mortality rate of 95% without transplant was reported in patients who had a documented pH less than 7.30. Other indicators of poor prognosis include renal insufficiency (stage 3 or worse), hepatic encephalopathy, a markedly elevated prothrombin time, or an elevated blood lactic acid level (lactic acidosis). One study has shown that a factor V level less than 10% of normal indicated a poor prognosis (91% mortality), whereas a ratio of factor VIII to factor V of less than 30 indicated a good prognosis (100% survival). Patients with a poor prognosis are usually identified for likely liver transplantation. Patients that do not die are expected to fully recover and have a normal life expectancy and quality of life.
During the latter part of the 20th century, the number of poisonings from salicylates declined, mainly because of the increased popularity of other over-the-counter analgesics such as paracetamol (acetaminophen). Fifty-two deaths involving single-ingredient aspirin were reported in the United States in 2000; however, in all but three of these cases, the reason for the ingestion of lethal doses was intentional—predominantly suicidal.
Aspirin poisoning has controversially been cited as a possible cause of the high mortality rate during the 1918 flu pandemic, which killed 50 to 100 million people.
The mortality rates from AAlPP vary from 40 to 80 percent. The actual numbers of cases may be much larger, as less than five percent of those with AAlPP eventually reach a tertiary care center. Since 1992, when aluminium phosphide became freely available in the market, it had, reportedly, overtaken all other forms of deliberate poisoning, such as organophosphorus and barbiturate poisoning, in North India. In a 25-year-long study on 5,933 unnatural deaths in northwest India, aluminium phosphide poisoning was found to be the major cause of death among all cases of poisonings.
In adults, most common causes are hemorrhoids and diverticulosis, both of which are relatively benign; however, it can also be caused by colorectal cancer, which is potentially fatal. In a newborn infant, haematochezia may be the result of swallowed maternal blood at the time of delivery, but can also be an initial symptom of necrotizing enterocolitis, a serious condition affecting premature infants. In babies, haematochezia in conjunction with abdominal pain is associated with intussusception. In adolescents and young adults, inflammatory bowel disease, particularly ulcerative colitis, is a serious cause of haematochezia that must be considered and excluded.
Hematochezia can be due to upper gastrointestinal bleeding. However, as the blood from such a bleed is usually chemically modified by action of acid and enzymes, it presents more commonly as black "tarry" feces known as melena. Haematochezia from an upper gastrointestinal source is an ominous sign, as it suggests a very significant bleed which is more likely to be life-threatening.
Beeturia can cause red colored feces after eating beets because of insufficient metabolism of a red pigment, and is a differential sign that may be mistaken as hematochezia.
Consumption of dragon fruit or pitaya may also cause red discoloration of the stool and sometimes the urine (pseudohematuria). This too, is a differential sign that is sometimes mistaken for hematochezia.
In infants, the Apt test can be used to distinguish fetal hemoglobin from maternal blood.
Other common causes of blood in the stool include:
- Colorectal cancer
- Crohns disease
- Ulcerative colitis
- Other types of inflammatory bowel disease, inflammatory bowel syndrome, or ulceration
- Rectal or anal hemorrhoids or anal fissures, particularly if they rupture or are otherwise irritated
- "Shigella" or shiga toxin producing "E. coli" food poisoning
- Necrotizing enterocolitis
- Diverticulosis
- Salmonellosis
- Upper gastrointestinal bleeding
- Peptic ulcer disease
- Esophageal varices
- Gastric cancer
- Intense exercise, especially a high-impact activity like running in hot weather.
Evidence suggests lead exposure is associated with high blood pressure, and studies have also found connections between lead exposure and coronary heart disease, heart rate variability, and death from stroke, but this evidence is more limited. People who have been exposed to higher concentrations of lead may be at a higher risk for cardiac autonomic dysfunction on days when ozone and fine particles are higher.
Since lead has been used widely for centuries, the effects of exposure are worldwide. Environmental lead is ubiquitous, and everyone has some measurable blood lead level. Atmospheric lead pollution increased dramatically beginning in the 1950s as a result of the widespread use of leaded gasoline. Lead is one of the largest environmental medicine problems in terms of numbers of people exposed and the public health toll it takes. Lead exposure accounts for about 0.2% of all deaths and 0.6% of disability adjusted life years globally.
Although regulation reducing lead in products has greatly reduced exposure in the developed world since the 1970s, lead is still allowed in products in many developing countries. In all countries that have banned leaded gasoline, average blood lead levels have fallen sharply. However, some developing countries still allow leaded gasoline, which is the primary source of lead exposure in most developing countries. Beyond exposure from gasoline, the frequent use of pesticides in developing countries adds a risk of lead exposure and subsequent poisoning. Poor children in developing countries are at especially high risk for lead poisoning. Of North American children, 7% have blood lead levels above 10 μg/dL, whereas among Central and South American children, the percentage is 33 to 34%. About one fifth of the world's disease burden from lead poisoning occurs in the Western Pacific, and another fifth is in Southeast Asia.
In developed countries, people with low levels of education living in poorer areas are most at risk for elevated lead. In the US, the groups most at risk for lead exposure are the impoverished, city-dwellers, and immigrants. African-American children and those living in old housing have also been found to be at elevated risk for high blood lead levels in the US. Low-income people often live in old housing with lead paint, which may begin to peel, exposing residents to high levels of lead-containing dust.
Risk factors for elevated lead exposure include alcohol consumption and smoking (possibly because of contamination of tobacco leaves with lead-containing pesticides). Adults with certain risk factors might be more susceptible to toxicity; these include calcium and iron deficiencies, old age, disease of organs targeted by lead (e.g. the brain, the kidneys), and possibly genetic susceptibility.
Differences in vulnerability to lead-induced neurological damage between males and females have also been found, but some studies have found males to be at greater risk, while others have found females to be.
In adults, blood lead levels steadily increase with increasing age. In adults of all ages, men have higher blood lead levels than women do. Children are more sensitive to elevated blood lead levels than adults are. Children may also have a higher intake of lead than adults; they breathe faster and may be more likely to have contact with and ingest soil. Children of ages one to three tend to have the highest blood lead levels, possibly because at that age they begin to walk and explore their environment, and they use their mouths in their exploration. Blood levels usually peak at about 18–24 months old. In many countries including the US, household paint and dust are the major route of exposure in children.
Once kidney failure has developed in dogs and cats, the outcome is poor.
The toxicity of aluminium phosphide is attributed to the liberation of phosphine gas, a cytotoxic compound that causes free radical mediated injury, inhibits vital cellular enzymes and is directly corrosive to tissues. The following reaction releases phosphine when AlP reacts with water in the body:
Iatrogenic causes of pancytopenia include chemotherapy for malignancies if the drug or drugs used cause bone marrow suppression. Rarely, drugs (antibiotics, blood pressure medication, heart medication) can cause pancytopenia.
The antibiotics Linezolid and Chloramphenicol can cause pancytopenia in some individuals.
Rarely, pancytopenia may have other causes, such as mononucleosis, or other viral diseases. Increasingly, HIV is itself a cause for pancytopenia.
- Familial hemophagocytic syndrome
- Aplastic anemia
- Gaucher's disease
- metastatic carcinoma of bone
- Multiple Myeloma
- overwhelming infections
- Lymphoma
- myelofibrosis
- Dyskeratosis congenita
- Myelodysplastic syndrome
- Leukemia
- Leishmaniasis
- Severe Folate or vitamin B12 deficiency
- Systemic lupus erythematosus
- Paroxysmal nocturnal hemoglobinuria (blood test)
- Viral infections (such as HIV, EBV--undetermined virus is most common).
- Alimentary toxic aleukia
- Copper deficiency
- Pernicious anemia
- Medication
- Hypersplenism
- Osteopetrosis
- Organic acidurias (Propionic Acidemia, Methylmalonic Aciduria, Isovaleric Aciduria)
- Low dose arsenic poisoning
- Sako disease (Myelodysplastic-cytosis)
- Chronic radiation sickness
- LIG4 syndrome
Various pesticides such as rodenticides may cause secondary poisoning. Some pesticides require multiple feedings spanning several days; this increases the time a target organism continues to move after ingestion, raising the risk of secondary poisoning of a predator.
Carbon monoxide is a product of combustion of organic matter under conditions of restricted oxygen supply, which prevents complete oxidation to carbon dioxide (CO). Sources of carbon monoxide include cigarette smoke, house fires, faulty furnaces, heaters, wood-burning stoves, internal combustion vehicle exhaust, electrical generators, propane-fueled equipment such as portable stoves, and gasoline-powered tools such as leaf blowers, lawn mowers, high-pressure washers, concrete cutting saws, power trowels, and welders. Exposure typically occurs when equipment is used in buildings or semi-enclosed spaces.
Riding in the back of pickup trucks has led to poisoning in children. Idling automobiles with the exhaust pipe blocked by snow has led to the poisoning of car occupants. Any perforation between the exhaust manifold and shroud can result in exhaust gases reaching the cabin. Generators and propulsion engines on boats, especially houseboats, has resulted in fatal carbon monoxide exposures.
Poisoning may also occur following the use of a self-contained underwater breathing apparatus (SCUBA) due to faulty diving air compressors.
In caves carbon monoxide can build up in enclosed chambers due to the presence of decomposing organic matter. In coal mines incomplete combustion may occur during explosions resulting in the production of afterdamp. The gas is up to 3% CO and may be fatal after just a single breath. Following an explosion in a colliery, adjacent interconnected mines may become dangerous due to the afterdamp leaking from mine to mine. Such an incident followed the Trimdon Grange explosion which killed men in the Kelloe mine.
Another source of poisoning is exposure to the organic solvent dichloromethane, found in some paint strippers, as the metabolism of dichloromethane produces carbon monoxide.
Chronic exposure to relatively low levels of carbon monoxide may cause persistent headaches, lightheadedness, depression, confusion, memory loss, nausea and vomiting. It is unknown whether low-level chronic exposure may cause permanent neurological damage. Typically, upon removal from exposure to carbon monoxide, symptoms usually resolve themselves, unless there has been an episode of severe acute poisoning. However, one case noted permanent memory loss and learning problems after a 3-year exposure to relatively low levels of carbon monoxide from a faulty furnace. Chronic exposure may worsen cardiovascular symptoms in some people. Chronic carbon monoxide exposure might increase the risk of developing atherosclerosis. Long-term exposures to carbon monoxide present the greatest risk to persons with coronary heart disease and in females who are pregnant.
Hematochezia is the passage of fresh blood through the anus, usually in or with stools (contrast with melena). Hematochezia is commonly associated with lower gastrointestinal bleeding, but may also occur from a brisk upper gastrointestinal bleed. The difference between hematochezia and rectorrhagia is that, in the latter, rectal bleeding is not associated with defecation; instead, it is associated with expulsion of fresh bright red blood without stools. The phrase bright red blood per rectum (BRBPR) is associated with hematochezia and rectorrhagia. It is also important to differentiate from hematopapyrus - blood on the toilet paper noticed when wiping. The term is from Greek αἷμα ("blood") and χέζειν ("to defaecate").
Withdrawal of the contaminated cooking oil is the most important initial step. Bed rest with leg elevation and a protein-rich diet are useful. Supplements of calcium, antioxidants (vitamin C and E), and thiamine and other B vitamins are commonly used. Corticosteroids and antihistaminics such as promethazine have been advocated by some investigators, but demonstrated efficacy is lacking. Diuretics are used universally but caution must be exercised not to deplete the intravascular volume unless features of frank congestive cardiac failure are present, as oedema is mainly due to increased capillary permeability. Cardiac failure is managed by bed rest, salt restriction, digitalis and diuretics. Pneumonia is treated with appropriate antibiotics. Renal failure may need dialysis therapy and complete clinical recovery is seen. Glaucoma may need operative intervention, but generally responds to medical management.
The most common source of ethylene glycol is automotive antifreeze or radiator coolant, where concentrations are high. Other sources of ethylene glycol include windshield deicing agents, brake fluid, motor oil, developing solutions for hobby photographers, wood stains, solvents, and paints. Some people put antifreeze into their cabin’s toilet to prevent it from freezing during the winter, resulting in toxicities when animals drink from the toilet. Small amounts of ethylene glycol may be contained in holiday ornaments such as snow globes.
The most significant source of ethylene glycol is from aircraft de-icing and anti-icing operations, where it is released onto land and eventually to waterways near airports experiencing cold winter climates. It is also used in manufacturing polyester products. In 2006, approximately 1540 kilotonnes of ethylene glycol were manufactured in Canada by three companies in Alberta, with most of the production destined for export.
"Argemone mexicana" (family Papaveraceae), a native of West Indies and naturalized in India, is known as “Shailkanta” in Bengal and “Bharbhanda” in Uttar Pradesh. It is also popularly known as “Pivladhatura” or “Satyanashi”, meaning devastating. The plant grows wildly in mustard and other fields. Its seeds are black in colour and are similar to the dark coloured mustards seeds ("Brassica juncea") in shape and size. Adulteration of argemone seeds in light yellow colored mustard seeds ("Brassica compestris") can easily be detected, but these seeds are rather difficult to visualize when mixed with dark coloured mustard seeds.
Argemone seeds yield approximately 35% oil. Alkaloid content in argemone oil varies from 0.44% to 0.50%. Argemone seeds find use as a substitute because of the easy availability, low cost and their complete miscibility of their oil with mustard oil.
Studies in the 1990s in Australia and the United Kingdom showed that between 8 and 12% of drug overdoses were following TCA ingestion. TCAs may be involved in up to 33% of all fatal poisonings, second only to analgesics. Another study reported 95% of deaths from antidepressants in England and Wales between 1993 and 1997 were associated with tricyclic antidepressants, particularly dothiepin and amitriptyline. It was determined there were 5.3 deaths per 100,000 prescriptions.
Sodium channel blockers such as Dilantin should not be used in the treatment of TCA overdose as the Na+ blockade will increase the QTI.
The level of digoxin for treatment is typically 0.5-2 ng/mL. Since this is a narrow therapeutic index, digoxin overdose can happen. A serum digoxin concentration of 0.5-0.9 ng/mL among those with heart failure is associated with reduced heart failure deaths and hospitalizations. It is therefore recommended that digoxin concentration be maintained in approximately this range if it is used in heart failure patients.
High amounts of the electrolyte potassium (K+) in the blood (hyperkalemia) is characteristic of digoxin toxicity. Digoxin toxicity increases in individuals who have kidney impairment. This is most often seen in elderly or those with chronic renal insufficiency or end-stage kidney disease.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
Causes of increased anion gap include:
- Lactic acidosis
- Ketoacidosis
- Chronic renal failure (accumulation of sulfates, phosphates, urea)
- Intoxication:
- Organic acids, salicylates, ethanol, methanol, formaldehyde, ethylene glycol, paraldehyde, isoniazid
- Sulfates, metformin
- Massive rhabdomyolysis
A mnemonic can also be used - MUDPILES
- M-Methanol
- U-Uremia (chronic kidney failure)
- D-Diabetic ketoacidosis
- P-Paraldehyde
- I-Infection, Iron, Isoniazid, Inborn errors of metabolism
- L-Lactic acidosis
- E-Ethylene glycol (Note: Ethanol is sometimes included in this mnemonic, as well, although the acidosis caused by ethanol is actually primarily due to the increased production of lactic acid found in such intoxication.)
- S-Salicylates