Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Visual outcomes for patients with ocular trauma due to blast injuries vary, and prognoses depend upon the type of injury sustained. The majority of poor visual outcomes arise from perforating injuries: only 21% of patients with perforating injuries with pre-operative light perception had a final best-corrected visual acuity (BCVA) better than 20/200. Collectively, patients who experienced choroidal hemorrhage, perforated or penetrated globes, retinal detachment, traumatic optic neuropathy, and subretinal macular hemorrhage carried the highest incidence rates of BCVAs worse than 20/200. Reports from Operation Iraqi Freedom (OIF) indicate that 42% of soldiers with globe injuries of any kind had a BCVA greater than or equal to 20/40 six months after injury, and soldiers with intraocular foreign bodies (IOFBs) retained 20/40 or better vision in 52% of studied cases.
Globe perforation, oculoplastic intervention, and neuro-ophthalmic injuries contribute significantly to reported poor visual outcomes. 21% of tertiary centers treating patients exposed to blast trauma reported traumatic optic neuropathy (TON) in their patients, although avulsion of the optic nerve and TON were reported in only 3% of combat injuries. In the event that a victim of globe penetrating trauma cannot perceive any light within two weeks of surgical intervention, the ophthalmologist may choose to enucleate as a preventative measure against sympathetic ophthalmia. However, this procedure is extremely rare, and current reports indicate that only one soldier in OIF has undergone enucleation in a tertiary care facility to prevent sympathetic ophthalmia.
Prevention of ocular trauma is most effective when soldiers wear polycarbonate eye armor correctly in the battlefield. For Operation Iraqi Freedom and Operation Enduring Freedom, the United States Military have made Ballistic Laser Protective Spectacles (BLPS), Special Protective Eyewear Cylindrical System (SPECS), and Sun/Wind/Dust Goggles (SWDG) available to combatants and associated personnel. These forms of eye protection are available in non-prescription and prescription lenses, and their use has been made mandatory at all times when soldiers are in areas of potential conflict. Despite their proven record of protection against secondary blast trauma, soldier compliance remains low: 85% of soldiers afflicted ocular trauma in the first year of OEF were not wearing their protective lenses at the time of detonation. While 41% of soldiers could not recall whether or not they were wearing eye protection at the time of detonation, 17% of casualties were wearing eye protection while 26% of casualties were not. Among this group, the poorest visual prognoses were documented in individuals who did not wear eye protection. The lack of compliance has been attributed to complaints about comfort, stylishness, and “misting” of the lenses when in the field. BLPS and SPECS offer the same line of protection against secondary trauma as the SWD goggles, and these lenses may overcome the complaints many soldiers have with their military-issue goggles.
Multiple complications are known to occur following eye injury: corneal scarring, hyphema, iridodialysis, post-traumatic glaucoma, uveitis cataract, vitreous hemorrhage and retinal detachment. The complications risk is high with retinal tears, penetrating injuries and severe blunt trauma.
A recent study estimated that from 2002-2003 there were 27,152 injuries in the United States related to the wearing of eyeglasses. The same study concluded that sports-related injuries due to eyeglasses wear were more common in those under the age of 18 and that fall-related injuries due to eyeglasses wear were more common in those aged 65 or more. Although eyeglasses-related injuries do occur, prescription eyeglasses and non-prescription sunglasses have been found to "offer measurable protection which results in a lower incidence of severe eye injuries to those wearing [them]".
In India study conducted by Dr.Shukla, injuries are found more in n males(81%).This is true for both rural and urban population but in 0-10 age group, the difference between males and females is less.Females account for 28% injuries in this age group.However, in sedentary workers, farmers, labourers and industrial workers the male % is as high as 95%.Chemical injuries are the comments cause of bilateral injuries in the eye .
Some of the adverse outcomes associated with intra-operative injuries include:
- Increased length of stay. This is due to ophthalmology consults required, associated infections and treatment.
- Increased costs. This is due to increased length of stay, cost of treating the complications.
- Pain and discomfort for the patient. Corneal abrasions are extremely painful for the patient and the treatment consists of drops and ointments applied in the eye which may cause further discomfort for the patient.
The incidence of eye injuries during general anaesthesia has been studied, and different methods of eye protection have been compared.
If tape is used to hold the eyes closed, ocular injury occurs during 0.1- 0.5% of general anaesthetics, and is usually corneal in nature.
When eyes are untaped during general anaesthesia, the incidence of ocular injury has been reported to be as high as 44%.
Intraoperative eye injuries account for 2% of medico-legal claims against anaesthetists in Australia and United Kingdom
and 3% in the USA.
A wide range of factors have been identified as being predictive of PCS, including low socioeconomic status, previous mTBI, a serious associated injury, headaches, an ongoing court case, and female gender. Being older than 40 and being female have also been identified as being predictive of a diagnosis of PCS, and women tend to report more severe symptoms. In addition, the development of PCS can be predicted by having a history of alcohol abuse, low cognitive abilities before the injury, a personality disorder, or a medical illness not related to the injury. PCS is also more prevalent in people with a history of psychiatric conditions such as clinical depression or anxiety before the injury.
Mild brain injury-related factors that increase the risk for persisting post-concussion symptoms include an injury associated with acute headache, dizziness, or nausea; an acute Glasgow Coma Score of 13 or 14; and suffering another head injury before recovering from the first. The risk for developing PCS also appears to be increased in people who have traumatic memories of the injury or expect to be disabled by the injury.
TBI is a leading cause of death and disability around the globe and presents a major worldwide social, economic, and health problem. It is the number one cause of coma, it plays the leading role in disability due to trauma, and is the leading cause of brain damage in children and young adults. In Europe it is responsible for more years of disability than any other cause. It also plays a significant role in half of trauma deaths.
Findings on the frequency of each level of severity vary based on the definitions and methods used in studies. A World Health Organization study estimated that between 70 and 90% of head injuries that receive treatment are mild, and a US study found that moderate and severe injuries each account for 10% of TBIs, with the rest mild.
The incidence of TBI varies by age, gender, region and other factors. Findings of incidence and prevalence in epidemiological studies vary based on such factors as which grades of severity are included, whether deaths are included, whether the study is restricted to hospitalized people, and the study's location. The annual incidence of mild TBI is difficult to determine but may be 100–600 people per 100,000.
The most common causes of TBI in the U.S. include violence, transportation accidents, construction, and sports. Motor bikes are major causes, increasing in significance in developing countries as other causes reduce. The estimates that between 1.6 and 3.8 million traumatic brain injuries each year are a result of sports and recreation activities in the US. In children aged two to four, falls are the most common cause of TBI, while in older children traffic accidents compete with falls for this position. TBI is the third most common injury to result from child abuse. Abuse causes 19% of cases of pediatric brain trauma, and the death rate is higher among these cases. Although men are twice as likely to have a TBI. Domestic violence is another cause of TBI, as are work-related and industrial accidents. Firearms and blast injuries from explosions are other causes of TBI, which is the leading cause of death and disability in war zones. According to Representative Bill Pascrell (Democrat, NJ), TBI is "the signature injury of the wars in Iraq and Afghanistan."
There is a promising technology called activation database-guided EEG biofeedback, which has been documented to return a TBI's auditory memory ability to above the control group's performance
It is not known exactly how common PCS is. Estimates of the prevalence at 3 months post-injury are between 24 and 84%, a variation possibly caused by different populations or study methodologies. The estimated incidence of PPCS (persistent postconcussive syndrome) is around 10% of mTBI cases. Since PCS by definition only exists in people who have suffered a head injury, demographics and risk factors are similar to those for head injury; for example, young adults are at higher risk than others for receiving head injury, and, consequently, of developing PCS.
The existence of PCS in children is controversial. It is possible that children's brains have enough plasticity that they are not affected by long-term consequences of concussion (though such consequences are known to result from moderate and severe head trauma). On the other hand, children's brains may be more vulnerable to the injury, since they are still developing and have fewer skills that can compensate for deficits. Clinical research has found higher rates of post-concussion symptoms in children with TBI than in those with injuries to other parts of the body, and that the symptoms are more common in anxious children. Symptoms in children are similar to those in adults, but children exhibit fewer of them. Evidence from clinical studies found that high school-aged athletes had slower recoveries from concussion as measured by neuropsychological tests than college-aged ones and adults. PCS is rare in young children.
Many closed-head injuries can be prevented by proper use of safety equipment during dangerous activities. Common safety features that can reduce the likelihood of experiencing a brain injury include helmets, hard hats, car seats, and safety belts. Another safety precaution that can decrease a person's risk for brain injury is "not" to drink and drive or allow oneself to be driven by a person who has been drinking or who is otherwise impaired.
Helmets can be used to decrease closed-head injuries acquired during athletic activities, and are considered necessary for sports such as American "tackle" football, where frequent head impacts are a normal part of the game. However, recent studies have questioned the effectiveness of even American football helmets, where the assumed protection of helmets promotes far more head impacts, a behavior known as risk compensation. The net result seems to have been an increase, not decrease, in TBI. The similar sports of Australian-rules football and rugby are always played helmetless, and see far fewer traumatic brain injuries. (See Australian rules football injuries.)
Bicycle helmets are perhaps the most promoted variety of helmet, based on the assumption that cycling without a helmet is a dangerous activity, with a large risk of serious brain injury. However, available data clearly shows that to be false. Cycling (with approximately 700 American fatalities per year from all medical causes) is a very minor source of fatal traumatic brain injury, whose American total is approximately 52,000 per year. Similarly, bicycling causes only 3% of America's non-fatal TBI.
Still, bicycle-helmet promotion campaigns are common, and many U.S jurisdictions have enacted mandatory bicycle-helmet laws for children. A few such jurisdictions, a few Canadian provinces, plus Australia and New Zealand mandate bicycle helmets even for adults. A bicycle-helmet educational campaign directed toward children claimed an increase in helmet use from 5.5% to 40.2% leading to a claimed decrease in bicycle-related head injuries by nearly 67%. However, other sources have shown that bicycle-helmet promotion reduces cycling, often with no per-cyclist reduction in TBI.
Estimates of bicycle-helmet use by American adults vary. One study found that only 25-30% of American adults wear helmets while riding bicycles, despite decades of promotion and despite sport cyclists' adoption of helmets as part of their uniform. It would appear that the typical American adult correctly recognizes ordinary cycling as a very minor risk.
Following the commercial (as opposed to public-health) success of bicycle helmets, there have been successful attempts to promote the sale of ski helmets. Again, results have been less than impressive, with great increases in helmet use yielding no reduction in fatalities, and with most injury reduction confined to lacerations, contusions, and minor concussions, as opposed to more serious head injuries.
There have been rare campaigns for motoring helmets. Unfortunately, just as people greatly overestimate the TBI danger of bicycling, they greatly underestimate the risk of motoring, which remains the largest source of TBI in the developed world, despite the protective effects of seatbelts and airbags.
A black eye, periorbital hematoma, or shiner, is bruising around the eye commonly due to an injury to the face rather than to the eye. The name is given due to the color of bruising. The so-called black eye is caused by bleeding beneath the skin and around the eye. Sometimes a black eye could get worse if not referring to a doctor after a few months, indicating a more extensive injury, even a skull fracture, particularly if the area around both eyes is bruised (raccoon eyes), or if there has been a prior head injury.
Although most black eye injuries are not serious, bleeding within the eye, called a hyphema, is serious and can reduce vision and damage the cornea. In some cases, abnormally high pressure inside the eyeball (ocular hypertension) can also result.
Despite the name, the eye itself is not affected. Blunt force or trauma to the eye socket results in burst capillaries and subsequent haemorrhaging (hematoma). The fatty tissue along with the lack of muscle around the eye socket allows a potential space for blood accumulation. As this blood is reabsorbed, various pigments are released similar to a bruise lending itself to the extreme outward appearance.
The dramatic appearance (discoloration purple black and blue and swelling) does not necessarily indicate a serious injury, and most black eyes resolve within a week. The tissues around the eye are soft and thus bruise easily when pinched against margins of bone which surround the eye socket. The treatment of black eye is the same as that for bruises in other parts of the body – cold compresses during the first twenty-four hours and contrasting hot and cold thereafter. During the process of healing, a black eye can be made less conspicuous by using cosmetics designed to obscure discolorations of the skin. In a severe contusion, blowout of the floor of the orbit may occur, leading to double vision. Such an injury requires surgical correction. A black eye developing after a severe head injury may be a sign of skull fracture.
Sympathetic ophthalmia is rare, affecting 0.2% to 0.5% of non-surgical eye wounds, and less than 0.01% of surgical penetrating eye wounds. There are no gender or racial differences in incidence of SO.
A posterior vitreous detachment (PVD) is a condition of the eye in which the vitreous membrane separates from the retina.
It refers to the separation of the posterior hyaloid membrane from the retina anywhere posterior to the vitreous base (a 3–4 mm wide attachment to the ora serrata).
The condition is common for older adults; over 75% of those over the age of 65 develop it. Although less common among people in their 40s or 50s, the condition is not rare for those individuals. Some research has found that the condition is more common among women.
The vitreous (Latin for "glassy") humor is a gel which fills the eye behind the lens. Between it and the retina is the vitreous membrane. With age the vitreous humor changes, shrinking and developing pockets of liquefaction, similar to the way a gelatin dessert shrinks and detaches from the edge of a pan. At some stage the vitreous membrane may peel away from the retina. This is usually a sudden event, but it may also occur slowly over months.
Age and refractive error play a role in determining the onset of PVD in a healthy person. PVD is rare in emmetropic people under the age of 40 years, and increases with age to 86% in the 90s. Several studies have found a broad range of incidence of PVD, from 20% of autopsy cases to 57% in a more elderly population of patients (average age was 83.4 years).
People with myopia (nearsightedness) greater than 6 diopters are at higher risk of PVD at all ages.
Posterior vitreous detachment does not directly threaten vision. Even so, it is of increasing interest because the interaction between the vitreous body and the retina might play a decisive role in the development of major pathologic vitreoretinal conditions, such as epiretinal membrane.
PVD may also occur in cases of cataract surgery, within weeks or months of the surgery.
The vitreous membrane is more firmly attached to the retina anteriorly, at a structure called the vitreous base. The membrane does not normally detach from the vitreous base, although it can be detached with extreme trauma. However, the vitreous base may have an irregular posterior edge. When the edge is irregular, the forces of the vitreous membrane peeling off the retina can become concentrated at small posterior extensions of the vitreous base. Similarly, in some people with retinal lesions such as lattice retinal degeneration or chorio-retinal scars, the vitreous membrane may be abnormally adherent to the retina. If enough traction occurs the retina may tear at these points. If there are only small point tears, these can allow glial cells to enter the vitreous humor and proliferate to create a thin epiretinal membrane that distorts vision. In more severe cases, vitreous fluid may seep under the tear, separating the retina from the back of the eye, creating a retinal detachment. Trauma can be any form from a blunt force trauma to the face such as a boxer's punch or even in some cases has been known to be from extremely vigorous coughing or blowing of the nose.
There are several different types of treatment available to those who have suffered a closed-head injury. The treatment type chosen can depend on several factors including the type and severity of injury as well as the effects that injury has on the patient.
The course of treatment differs for each patient and can include several types of treatment, depending on the patient’s specific needs.
Early treatment is vital to recovering lost motor function after an injury, but cognitive abilities can be recovered regardless of time past since injury.
Predisposing factors for Postoperative PVR are preoperative PVR, aphakia, high levels of vitreous proteins, duration of retinal detachment before corrective surgery, the size of the retinal hole or tear, intra-ocular inflammation, vitreous hemorrhage, and trauma to the eye. An equation to calculate the patient's risk for acquiring PVR is:
1 is added if the risk factor is present and 0 if the risk factor is absent. A patient is at a high risk for developing PVR is the PVR score is >6.33.
Vitreomacular adhesion (VMA) is a human medical condition where the vitreous gel (or simply vitreous) of the human eye adheres to the retina in an abnormally strong manner. As the eye ages, it is common for the vitreous to separate from the retina. But if this separation is not complete, i.e. there is still an adhesion, this can create pulling forces on the retina that may result in subsequent loss or distortion of vision. The adhesion in of itself is not dangerous, but the resulting pathological vitreomacular traction (VMT) can cause severe ocular damage.
The current standard of care for treating these adhesions is pars plana vitrectomy (PPV), which involves surgically removing the vitreous from the eye. A biological agent for non-invasive treatment of adhesions called ocriplasmin has been approved by the FDA on Oct 17 2012.
Of the many causes, conjunctivitis is the most common. Others include:
"Usually nonurgent"
- blepharitis - a usually chronic inflammation of the eyelids with scaling, sometimes resolving spontaneously
- subconjunctival hemorrhage - a sometimes dramatic, but usually harmless, bleeding underneath the conjunctiva most often from spontaneous rupture of the small, fragile blood vessels, commonly from a cough or sneeze
- inflamed pterygium - a benign, triangular, horizontal growth of the conjunctiva, arising from the inner side, at the level of contact of the upper and lower eyelids, associated with exposure to sunlight, low humidity and dust. It may be more common in occupations such as farming and welding.
- inflamed pinguecula - a yellow-white deposit close to the junction between the cornea and sclera, on the conjunctiva. It is most prevalent in tropical climates with much UV exposure. Although harmless, it can occasionally become inflamed.
- dry eye syndrome - caused by either decreased tear production or increased tear film evaporation which may lead to irritation and redness
- airborne contaminants or irritants
- tiredness
- drug use including cannabis
"Usually urgent"
- acute angle closure glaucoma - implies injury to the optic nerve with the potential for irreversible vision loss which may be permanent unless treated quickly, as a result of increased pressure within the eyeball. Not all forms of glaucoma are acute, and not all are associated with increased 'intra-ocular' pressure.
- injury
- keratitis - a potentially serious inflammation or injury to the cornea (window), often associated with significant pain, light intolerance, and deterioration in vision. Numerous causes include virus infection. Injury from contact lenses can lead to keratitis.
- iritis - together with the ciliary body and choroid, the iris makes up the uvea, part of the middle, pigmented, structures of the eye. Inflammation of this layer (uveitis) requires urgent control and is estimated to be responsible for 10% of blindness in the United States.
- scleritis - a serious inflammatory condition, often painful, that can result in permanent vision loss, and without an identifiable cause in half of those presenting with it. About 30-40% have an underlying systemic autoimmune condition.
- episcleritis - most often a mild, inflammatory disorder of the 'white' of the eye unassociated with eye complications in contrast to scleritis, and responding to topical medications such as anti-inflammatory drops.
- tick borne illnesses like Rocky Mountain spotted fever - the eye is not primarily involved, but the presence of conjunctivitis, along with fever and rash, may help with the diagnosis in appropriate circumstances.
Over time, it is common for the vitreous within the human eye to liquify and collapse in processes known as syneresis and synchisis respectively. This creates fluid-filled areas that can combine to form pockets of vitreous gel that are mostly liquid with very small concentrations of collagen. If these liquid pockets are close enough to the interface between the vitreous gel and the retina, they can cause complete separation of the vitreous from the retina in a normally occurring process in older humans called posterior vitreous detachment (PVD). PVD in of itself is not dangerous and a natural process.
If the separation of the vitreous from the retina is not complete, areas of focal attachment or adhesions can occur, i.e. a VMA. The pulling forces or traction from this adhesion on the retinal surface can sometimes cause edema within the retina, damage to retinal blood vessels causing bleeding, or damage to the optic nerve causing disruption in the nerve signals sent to the brain for visual processing. It is important to note that while the VMA itself is not dangerous, the resultant pulling on the retina called vitreomacular traction (VMT) causes the above damage. The size and strength of the VMA determine the variety of resulting pathologies or symptoms.
VMA can also lead to the development of VMT/traction-related complications such as macular puckers and macular holes leading to distorted vision or metamorphopsia; epiretinal membrane; tractional macular oedema; myopic macular retinoschisis; visual impairment; blindness. The incidence of VMA is reported as high as 84% for patients with macular hole, 100% for patients with vitreomacular traction syndrome, and 56% in idiopathic epimacular membrane.
Terrier breeds are predisposed to lens luxation, and it is probably inherited in the Sealyham Terrier, Jack Russell Terrier, Wirehaired Fox Terrier, Rat Terrier, Teddy Roosevelt Terrier, Tibetan Terrier, Miniature Bull Terrier, Shar Pei, and Border Collie. The mode of inheritance in the Tibetan Terrier and Shar Pei is likely autosomal recessive. Labrador Retrievers and Australian Cattle Dogs are also predisposed.
Hypertropia may be either congenital or acquired, and misalignment is due to imbalance in extraocular muscle function. The superior rectus, inferior rectus, superior oblique, and inferior oblique muscles affect the vertical movement of the eyes. These muscles may be either paretic, restrictive (fibrosis) or overactive effect of the muscles. Congenital cases may have developmental abnormality due to abnormal muscle structure, usually muscle atrophy / hypertrophy or rarely, absence of the muscle and incorrect placement.
Specific & common causes include:
- Superior oblique Palsy / Congenital fourth nerve palsy
- Inferior oblique overaction
- Brown's syndrome
- Duane's retraction syndrome
- Double elevator palsy
- Fibrosis of rectus muscle in Graves Disease (most commonly inferior rectus is involved)
- Surgical trauma to the vertical muscles (e.g. during scleral buckling surgery or cataract surgery causing iatrogenic trauma to the vertical muscles).
Sudden onset hypertropia in a middle aged or elderly adult may be due to compression of the trochlear nerve and mass effect from a tumor, requiring urgent brain imaging using MRI to localise any space occupying lesion. It could also be due to infarction of blood vessels supplying the nerve, due to diabetes and atherosclerosis. In other instances it may be due to an abnormality of neuromuscular transmission, i.e., Myasthenia Gravis.
CNV causes may be congenital in nature, such as with Aniridia, or acquired. Frequently, inflammatory, infectious, degenerative, traumatic and iatrogenic (from contact lenses) diseases are responsible for acquired CNV.
Some major associated, acquired inflammatory conditions include graft rejection following keratoplasty, graft or host diseases of the new tissue, atopic conjunctivitis, rosacea, ocular pemphigoid, Lyell's syndrome, and Steven's Johnson syndrome.
Infections responsible for CNV range from bacterial (chlamydia, syphilis, pseduomonas), Viral (herpes simplex and herpes zoster viruses), Fungal (candida, asperigillus, fusarium), and parasistic (onchocerca volvolus).
Degenerative diseases such as pterygiums, and terrien's marginal degeneration may be responsible.
Traumas frequently seen with CNV include ulceration, alkali burns, and stem cell deficiency.
One of the most common causes of corneal neovascularization is iastrogenic pathology from contact lens wear. This is especially true of lenses made with older hydrogel materials such as HEMA (2-hydroxyethyl methacrylate) for both daily and extended wear. Such older hydrogel materials have a relatively low oxygen transmissibility so the cornea becomes starved of oxygen leading to the ingress of blood capillaries into the clear cornea to satisfy that oxygen demand. Older estimates have 128,000 to 470,000 cases of lens-induced CNV each year, but this may be decreasing due to the increasing popularity of daily disposable lenses.
The risk for CNV is elevated in certain instances for patients following penetrating keratoplasty without active inflammation or epithelial defects. CNV is more likely to occur in those with active blepharitis, those who receive sutured knots in their host stromas, and those with a large recipient area.
Late-onset endophthalmitis is mostly caused by Proprionibacterium acnes.
Causative organisms are not present in all cases. Endophthalmitis can emerge by entirely sterile means, e.g. an allergic reaction to a drug administered intravitreally.