Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Certain maternal health issues can cause birth injuries. For example, gestational diabetes can cause premature birth, macrosomia, or stillbirth.
Maternal infection may be transmitted to the fetus; this is called a vertically transmitted infection. The fetus has a weak immune system, so infections that are relatively minor in adults can be very serious in a developing fetus. In addition, some studies suggest that maternal infections increase the risk of neurodevelopmental disorders, including schizophrenia, in the child.
While any number of injuries may occur during the birthing process. A number of specific conditions are well described. Brachial plexus palsy occurs in 0.4 to 5.1 infants per 1000 live birth. Head trauma and brain damage during delivery can lead to a number of conditions include: caput succedaneum, cephalohematoma, subgaleal hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, epidural hemorrhage, and intraventricular hemorrhage.
The most common fracture during delivery is that of the clavicle (0.5%).
About 16% of deliveries where shoulder dystocia occurs will have conventional risk factors.
There are well-recognized risk factors, such as diabetes, fetal macrosomia, and maternal obesity, but it is often difficult to predict, despite recognised risk factors. Despite appropriate obstetric management, fetal injury (such as brachial plexus injury) or even fetal death can be a complication of this obstetric emergency.
Risk factors:
- Age >35
- Short in stature
- Small or abnormal pelvis
- More than 42 weeks gestation
- Estimated fetal weight > 4500g
- Maternal diabetes (2-4 fold increase in risk)
Factors which increase the risk/are warning signs:
- the need for oxytocics
- a prolonged first or second stage of labour
- turtle sign
- head bobbing in the second stage
- failure to restitute
- No shoulder rotation or descent
- Instrumental delivery
Recurrence rates are relatively high (if you had shoulder dystocia in a previous delivery the risk is now 10% higher than in the general population).
Although the definition is imprecise, it occurs in approximately 0.3-1% of vaginal births.
A number of factors have been identified that are linked to a higher risk of a preterm birth such as being less than 18 years of age. Maternal height and weight can play a role.
Further, in the US and the UK, black women have preterm birth rates of 15–18%, more than double than that of the white population. Filipinos are also at high risk of premature birth, and it is believed that nearly 11-15% of Filipinos born in the U.S. (compared to other Asians at 7.6% and whites at 7.8%) are premature. Filipinos being a big risk factor is evidenced with the Philippines being the 8th highest ranking in the world for preterm births, the only non-African country in the top 10. This discrepancy is not seen in comparison to other Asian groups or Hispanic immigrants and remains unexplained.
Pregnancy interval makes a difference as women with a six-month span or less between pregnancies have a two-fold increase in preterm birth. Studies on type of work and physical activity have given conflicting results, but it is opined that stressful conditions, hard labor, and long hours are probably linked to preterm birth.
A history of spontaneous (i.e., miscarriage) or surgical abortion has been associated with a small increase in the risk of preterm birth, with an increased risk with increased number of abortions, although it is unclear whether the increase is caused by the abortion or by confounding risk factors (e.g., socioeconomic status). Increased risk has not been shown in women who terminated their pregnancies medically. Pregnancies that are unwanted or unintended are also a risk factor for preterm birth.
Adequate maternal nutrition is important. Women with a low BMI are at increased risk for preterm birth. Further, women with poor nutrition status may also be deficient in vitamins and minerals. Adequate nutrition is critical for fetal development and a diet low in saturated fat and cholesterol may help reduce the risk of a preterm delivery. Obesity does not directly lead to preterm birth; however, it is associated with diabetes and hypertension which are risk factors by themselves. To some degree those individuals may have underlying conditions (i.e., uterine malformation, hypertension, diabetes) that persist.
Women with celiac disease have an increased risk of the development of preterm birth. The risk of preterm birth is more elevated when celiac disease remains undiagnosed and untreated.
Marital status is associated with risk for preterm birth. A study of 25,373 pregnancies in Finland revealed that unmarried mothers had more preterm deliveries than married mothers (P=0.001). Pregnancy outside of marriage was associated overall with a 20% increase in total adverse outcomes, even at a time when Finland provided free maternity care. A study in Quebec of 720,586 births from 1990 to 1997 revealed less risk of preterm birth for infants with legally married mothers compared with those with common-law wed or unwed parents.
Genetic make-up is a factor in the causality of preterm birth. Genetics has been a big factor into why Filipinos have a high risk of premature birth as the Filipinos have a large prevalence of mutations that help them be predisposed to premature births. An intra- and transgenerational increase in the risk of preterm delivery has been demonstrated. No single gene has been identified.
Subfertility is associated with preterm birth. Couples who have tried more than 1 year versus those who have tried less than 1 year before achieving a spontaneous conception have an adjusted odds ratio of 1.35 (95% confidence interval 1.22-1.50) of preterm birth. Pregnancies after IVF confers a greater risk of preterm birth than spontaneous conceptions after more than 1 year of trying, with an adjusted odds ratio of 1.55 (95% CI 1.30-1.85).
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
The use of fertility medication that stimulates the ovary to release multiple eggs and of IVF with embryo transfer of multiple embryos has been implicated as an important factor in preterm birth. Maternal medical conditions increase the risk of preterm birth. Often labor has to be induced for medical reasons; such conditions include high blood pressure, pre-eclampsia, maternal diabetes, asthma, thyroid disease, and heart disease.
In a number of women anatomical issues prevent the baby from being carried to term. Some women have a weak or short cervix (the strongest predictor of premature birth) Women with vaginal bleeding during pregnancy are at higher risk for preterm birth. While bleeding in the third trimester may be a sign of placenta previa or placental abruption – conditions that occur frequently preterm – even earlier bleeding that is not caused by these conditions is linked to a higher preterm birth rate. Women with abnormal amounts of amniotic fluid, whether too much (polyhydramnios) or too little (oligohydramnios), are also at risk.
The mental status of the women is of significance. Anxiety and depression have been linked to preterm birth.
Finally, the use of tobacco, cocaine, and excessive alcohol during pregnancy increases the chance of preterm delivery. Tobacco is the most commonly abused drug during pregnancy and contributes significantly to low birth weight delivery. Babies with birth defects are at higher risk of being born preterm.
Passive smoking and/or smoking before the pregnancy influences the probability of a preterm birth. The World Health Organization published an international study in March 2014.
Presence of anti-thyroid antibodies is associated with an increased risk preterm birth with an odds ratio of 1.9 and 95% confidence interval of 1.1–3.5.
A 2004 systematic review of 30 studies on the association between intimate partner violence and birth outcomes concluded that preterm birth and other adverse outcomes, including death, are higher among abused pregnant women than among non-abused women.
The Nigerian cultural method of abdominal massage has been shown to result in 19% preterm birth among women in Nigeria, plus many other adverse outcomes for the mother and baby. This ought not be confused with massage conducted by a fully trained and licensed massage therapist or by significant others trained to provide massage during pregnancy, which has been shown to have numerous positive results during pregnancy, including the reduction of preterm birth, less depression, lower cortisol, and reduced anxiety.
Sequelae can occur in both the mother and the infant after a traumatic birth.
Birth trauma is uncommon in the Western world in relation to rates in the third world. In the West injury occurs in 1.1% of C-sections.
In twin pregnancies, it is very common for one or both babies to be in the breech position. Most often twin babies do not have the chance to turn around because they are born prematurely. If both babies are in the breech position and the mother has gone into labour early, a cesarean section may be the best option. About 30-40% of twin pregnancies result in only one baby being in the breech position. If this is the case, the babies can be born vaginally. After the first baby who is not in the breech position is delivered, the baby who is presented in the breech position may turn itself around, if this does not happen another procedure may performed called the breech extraction. The breech extraction is the procedure that involves the obstetrician grabbing the second twin's feet and pulling him/her into the birth canal. This will help with delivering the second twin vaginally. However, if the second twin is larger than the first, complications with delivering the second twin vaginally may arise and a cesarean section should be performed. At times, the first twin (the twin closest to the birth canal) can be in the breech position with the second twin being in the cephalic position (vertical). When this occurs, risks of complications are higher than normal. In particular, a serious complication known as Locked twins. This is when both babies interlock their chins during labour. When this happens a cesarean section should be performed immediately.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
Fetal entities: First twin 17-30%; Second twin 28-39%; Stillborn 26%; Prader-Willi syndrome 50%, Werdnig-Hoffman syndrome 10%; Smith-Lemli-Opitz syndrome 40%; Fetal alcohol syndrome 40%; Potter anomaly 36%; Zellweger syndrome 27%; Myotonic dystrophy 21%, 13 trisomy syndrome 12%; 18 trisomy syndrome 43%; 21 trisomy syndrome 5%; de Lange syndrome 10%; Anencephalus 6-18%, Spina bifida 20-30%; Congenital Hydrocephalus 24-37%; Osteogenesis imperfecta 33.3%; Amyoplasia 33.3%; Achondrogenesis 33.3%; Amelia 50%; Craniosynostosis 8%; Sacral agenesis 30.4%; Arthrogriposis multiplex congenita 33.3; Congenital dislocation of the hip 33.3%; Hereditary sensory neuropathy type III 25%; Centronuclear myoptathy 16.7%; Multiple pituitary hormone deficiency 50%; Isolated pituitary hormone deficiency 20%; Ectopic posterior pituitary gland 33.3%; Congenital bilateral perisilvian syndrome 33.3; Symmetric fetal growth restriction 40%; Asymmetric fetal growth restriction 40%; Nonimmune hydrops fetalis 15%; Atresio ani 18.2%; Microcephalus 15.4%; Omphalocele 12.5%; Prematurity 40%
Placental and amniotic fluid entities: Amniotic sheet perpendicular to the placenta 50%; Cornual-fundal implantation of the placenta 30%; Placenta previa 12.5%; Oligohydramnios 17%; Polyhydramnios 15.8%; MATERNAL ENTITIES: Uterus arcuatus 22.6%; Uterus unicornuatus 33.3%; Uterus bicornuatus 34.8%; Uterus didelphys 30-41%; Uterus septus 45.8%; Leimyoma uteri 9-20%; Spinal cord injury 10%; Carriers of Duchenne muscular dystrophy 17%
Combination of two medical entities: First twin in uterus with two bodies 14.29%; Second twin in uterus with two bodies 18.52%.
Also, women with previous Caesarean deliveries have a risk of breech presentation at term twice that of women with previous vaginal deliveries.
The highest possible probability of breech presentation of 50% indicates that breech presentation is a consequence of random filling of the intrauterine space, with the same probability of breech and cephalic presentation in a longitudinally elongated uterus.
Genetics plays a role in having a baby born with LGA. Taller, heavier parents tend to have larger babies. Babies born to an obese mother have greatly increased chances of LGA.
There are believed to be links with polyhydramnios (excessive amniotic sac fluid). If one has excessive amniotic fluid, microsomia is more likely, since there is no room for the baby to grow. Preterm labor is also highly likely for polyhydramnios.
In the United States, intrauterine hypoxia and birth asphyxia were listed together as the tenth leading cause of neonatal death.
IH/BA is also a causitive factor in cardiac and circulatory birth defects the sixth most expensive condition, as well as premature birth and low birth weight the second most expensive and it is one of the contributing factors to infant respiratory distress syndrome (RDS) also known as hyaline membrane disease, the most expensive medical condition to treat and the number one cause of infant mortality.
The exact cause of congenital amputation is unknown and can result from a number of causes. However, most cases show that the first three months in a pregnancy are when most birth defects occur because that is when the organs of the fetus are beginning to form. One common cause is amniotic band syndrome, which occurs when the inner fetal membrane (amnion) ruptures without injury to the outer membrane (chorion). Fibrous bands from the ruptured amnion float in the amniotic fluid and can get entangled with the fetus, thus reducing blood supply to the developing limbs to such an extent that the limbs can become strangulated; the tissues die and are absorbed into the amniotic fluid. A baby with congenital amputation can be missing a portion of a limb or the entire limb, which results in the complete absence of a limb beyond a certain point where only a stump is left is known as transverse deficiency or amelia. When a specific part is missing, it is referred to as longitudinal deficiency. Finally, phocomelia occurs when only a mid-portion of a limb is missing; for example when the hands or feet are directly attached to the trunk of the body.
Amnion ruptures can be caused by:
- teratogenic drugs (e.g. thalidomide, which causes phocomelia), or environmental chemicals
- ionizing radiation (atomic weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
- trauma
Congenital amputation is the least common reason for amputation, but it is projected that one in 2000 babies are born each year with a missing or deformed limb. During certain periods in history, an increase in congenital amputations has been documented. One example includes the thalidomide tragedy that occurred in the 1960s when pregnant mothers were given a tranquilizer that contained the harmful drug, which produced an increase in children born without limbs. Another example was the 1986 Chernobyl catastrophe in Ukraine, where the radiation exposure caused many children to be born with abnormal or missing limbs .
For most women, PGP resolves in weeks after delivery but for some it can last for years resulting in a reduced tolerance for weight bearing activities. PGP can take from 11 weeks, 6 months or even up to 2 years postpartum to subside. However, some research supports that the average time to complete recovery is 6.25 years, and the more severe the case is, the longer recovery period.
Overall, about 45% of all pregnant women and 25% of all women postpartum suffer from PGP. During pregnancy, serious pain occurs in about 25%, and severe disability in about 8% of patients. After pregnancy, problems are serious in about 7%. There is no correlation between age, culture, nationality and numbers of pregnancies that determine a higher incidence of PGP.
If a woman experiences PGP during one pregnancy, she is more likely to experience it in subsequent pregnancies; but the severity cannot be determined.
Preventing or delaying premature birth is considered the most important step in decreasing the risk of PVL. Common methods for preventing a premature birth include self-care techniques (dietary and lifestyle decisions), bed rest, and prescribed anti-contraction medications. Avoiding premature birth allows the fetus to develop further, strengthening the systems affected during the development of PVL.
An emphasis on prenatal health and regular medical examinations of the mother can also notably decrease the risk of PVL. Prompt diagnosis and treatment of maternal infection during gestation reduces the likelihood of large inflammatory responses. Additionally, treatment of infection with steroids (especially in the 24–34 weeks of gestation) have been indicated in decreasing the risk of PVL.
It has also been suggested that avoiding maternal cocaine usage and any maternal-fetal blood flow alterations can decrease the risk of PVL. Episodes of hypotension or decreased blood flow to the infant can cause white matter damage.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Brachial plexus injury is found in both children and adults, but there is a difference between children and adults with BPI.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
The fetal and neonatal brain is a rapidly changing, developing structure. Because neural structures are still developing and connections are still being formed at birth, many medications that are successful for treatment and protection in the adult central nervous system (CNS) are ineffective in infants. Moreover, some adult treatments have actually been shown to be toxic to developing brains.
A 2008 bulletin from the World Health Organization estimates that 900,000 total infants die each year from birth asphyxia, making it a leading cause of death for newborns.
In the United States, intrauterine hypoxia and birth asphyxia was listed as the tenth leading cause of neonatal death.