Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is supposed to be caused by defects of genes on chromosome 3 and 18. One form of Seckel syndrome can be caused by mutation in the gene encoding the ataxia telangiectasia and Rad3 related protein () which maps to chromosome 3q22.1-q24. This gene is central in the cell's DNA damage response and repair mechanism.
Types include:
The Seckel syndrome or microcephalic primordial dwarfism (also known as bird-headed dwarfism, Harper's syndrome, Virchow-Seckel dwarfism, and Bird-headed dwarf of Seckel) is an extremely rare congenital nanosomic disorder.
Inheritance is autosomal recessive.
It is characterized by intrauterine growth retardation and postnatal dwarfism with a small head, narrow bird-like face with a beak-like nose, large eyes with down-slanting palpebral fissures , receding mandible and intellectual disability.
A mouse model has been developed. This mouse model is characterized by a severe deficiency of ATR protein. These mice suffer high levels of replicative stress and DNA damage. Adult Seckel mice display accelerated aging. These findings are consistent with the DNA damage theory of aging.
Its exact cause is unknown, but present research points toward a genetic component, possibly following maternal genes.
It involves hypomethylation of "H19" and "IGF2". In 10% of the cases the syndrome is associated with maternal uniparental disomy (UPD) on chromosome 7. This is an imprinting error where the person receives two copies of chromosome 7 from the mother (maternally inherited) rather than one from each parent.
Like other imprinting disorders (e.g. Prader–Willi syndrome, Angelman syndrome, and Beckwith–Wiedemann syndrome), Silver–Russell syndrome may be associated with the use of assisted reproductive technologies such as in vitro fertilization.
Medical conditions include frequent ear infection, hearing loss, hypotonia, developmental problems, respiratory problems, eating difficulties, light sensitivity, and esophageal reflux.
Data on fertility and the development of secondary sex characteristics is relatively sparse. It has been reported that both male and female patients have had children. Males who have reproduced have all had the autosomal dominant form of the disorder; the fertility of those with the recessive variant is unknown.
Researchers have also reported abnormalities in the renal tract of affected patients. Hydronephrosis is a relatively common condition, and researchers have theorized that this may lead to urinary tract infections. In addition, a number of patients have suffered from cystic dysplasia of the kidney.
A number of other conditions are often associated with Robinow syndrome. About 15% of reported patients suffer from congenital heart defects. Though there is no clear pattern, the most common conditions include pulmonary stenosis and atresia. In addition, though intelligence is generally normal, around 15% of patients show developmental delays.
Until recently, the medical literature did not indicate a connection among many genetic disorders, both genetic syndromes and genetic diseases, that are now being found to be related. As a result of new genetic research, some of these are, in fact, highly related in their root cause despite the widely varying set of medical symptoms that are clinically visible in the disorders. Ellis–van Creveld syndrome is one such disease, part of an emerging class of diseases called ciliopathies. The underlying cause may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases. Known ciliopathies include primary ciliary dyskinesia, Bardet–Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel–Gruber syndrome and some forms of retinal degeneration.
Weyers acrofacial dysostosis is due to another mutation in the EVC gene and hence is allelic with Ellis–van Creveld syndrome.
There are as yet no effective treatments for primordial dwarfism. It is known that PD is caused by inheriting a mutant gene from each parent. The lack of normal growth in the disorder is not due to a deficiency of growth hormone, as in hypopituitary dwarfism. Administering growth hormone, therefore, has little or no effect on the growth of the individual with primordial dwarfism, except in the case of Russell Silver Syndrome. Individuals with RSS respond favorably to growth hormone treatment, this fact is supported by The Magic Foundation. Children with RSS that are treated with growth hormone before puberty may achieve several inches of additional height. In January 2008, it was published that mutations in the pericentrin gene (PCNT) were found to cause primordial dwarfism. Pericentrin has a role in cell division, proper chromosome segregation, and cytokinesis.
Alopecia contractures dwarfism mental retardation syndrome or (ACD mental retardation syndrome) is a developmental disorder which causes mainly baldness and dwarfism in combination with intellectual disability; skeletal anomalies, caries and nearsightedness are also typical.
The ACD mental retardation syndrome was first described in 1980 by Albert Schinzel and only few cases have since been identified in the world. At the time Dr. Schinzel made no conclusion of the hereditary pattern of this syndrome but similarities between cases reported by year 2000 seem to suggest autosomal or x-linked recessive inheritance or possibly a dominant mutation caused by mosaicism as causes of this syndrome.
Ellis–van Creveld syndrome often is the result of founder effects in isolated human populations, such as the Amish and some small island inhabitants. Although relatively rare, this disorder does occur with higher incidence within founder-effect populations due to lack of genetic variability. Observation of the inheritance pattern has illustrated that the disease is autosomal recessive, meaning that both parents have to carry the gene in order for an individual to be affected by the disorder.
Ellis–van Creveld syndrome is caused by a mutation in the "EVC" gene, as well as by a mutation in a nonhomologous gene, "EVC2", located close to the EVC gene in a head-to-head configuration. The gene was identified by positional cloning. The EVC gene maps to the chromosome 4 short arm (4p16). The function of a healthy EVC gene is not well understood at this time.
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
SCARF syndrome is a rare syndrome characterized by skeletal abnormalities, cutis laxa, craniostenosis, ambiguous genitalia, retardation, and facial abnormalities. It shares some features with Lenz-Majewski hyperostotic dwarfism syndrome.
Lenz–Majewski syndrome is a skin condition characterized by hyperostosis, craniodiaphyseal dysplasia, dwarfism, cutis laxa, proximal symphalangism, syndactyly, brachydactyly, mental retardation, enamel hypoplasia, and hypertelorism.
In 2013, whole-exome sequencing showed that a missense mutation resulting in overactive phosphatidylserine synthase 1 was the cause of LMS, making it the first known human disease to be caused by disrupted phosphatidylserine metabolism. The researchers suggested a link between the condition and bone metabolism.
Genetic studies have linked the autosomal recessive form of the disorder to the "ROR2" gene on position 9 of the long arm of chromosome 9. The gene is responsible for aspects of bone and cartilage growth. This same gene is involved in causing autosomal dominant brachydactyly B.
The autosomal dominant form has been linked to three genes - WNT5A, Segment polarity protein dishevelled homolog DVL-1 (DVL1) and Segment polarity protein dishevelled homolog DVL-3 (DVL3). This form is often caused by new mutations and is generally less severe then the recessive form. Two further genes have been linked to this disorder - Frizzled-2 (FZD2) and Nucleoredoxin (NXN gene). All of these genes belong to the same metabolic pathway - the WNT system. This system is involved in secretion for various compounds both in the fetus and in the adult.
A fetal ultrasound can offer prenatal diagnosis 19 weeks into pregnancy. However, the characteristics of a fetus suffering from the milder dominant form may not always be easy to differentiate from a more serious recessive case. Genetic counseling is an option given the availability of a family history.
Stimmler syndrome is a rare autosomal recessive congenital disorder first described by Stimmler et al. in 1970. It is characterized by dwarfism, diabetes, a small head, and high levels of alanine in the urine.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
Primordial dwarfism is a form of dwarfism that results in a smaller body size in all stages of life beginning from before birth. More specifically, primordial dwarfism is a diagnostic category including specific types of profoundly proportionate dwarfism, in which individuals are extremely small for their age, even as a fetus. Most individuals with primordial dwarfism are not diagnosed until they are about 3-5 years of age.
Medical professionals typically diagnose the fetus as being small for the gestational age, or as having intrauterine growth disability when an ultrasound is conducted. Typically, people with primordial dwarfism are born with very low birth weights. After birth, growth continues at a much slower rate, leaving individuals with primordial dwarfism perpetually years behind their peers in stature and in weight.
Most cases of short stature are caused by skeletal or endocrine disorders. The five subtypes of primordial dwarfism are among the most severe forms of the 200 types of dwarfism, and some sources estimate that there are only 100 individuals in the world with the disorder. Other sources list the number of people
currently afflicted as high as 100 in North America.
It is rare for individuals affected by primordial dwarfism to live past the age of 30. In the case of microcephalic osteodysplastic primordial dwarfism type 2 (MOPDII) there can be increased risk of vascular problems, which may cause premature death.
Silver–Russell syndrome (SRS), also called Silver–Russell dwarfism or Russell–Silver syndrome (RSS) is a growth disorder occurring in approximately 1/50,000 to 1/100,000 births. In the United States it is usually referred to as Russell–Silver syndrome, and Silver–Russell syndrome elsewhere. It is one of 200 types of dwarfism and one of five types of primordial dwarfism and is one of the few forms that is considered treatable in some cases.
There is no statistical significance of the syndrome occurring preferentially in either males or females.
Stimmler syndrome is an autosomal recessive genetic disorder whose symptoms appear before birth or during infancy. In a study of two sisters born within a year of each other, both with Stimmler syndrome, it was found that high levels of alanine, pyruvate, and lactate were present in both the blood and urine. It was believed that the alanine was derived from the pyruvate.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
It is caused by mutations in the SHOX gene found in the pseudoautosomal region PAR1 of the X and Y chromosomes, at band Xp22.33 or Yp11.32.
SHOX gene deletions have been identified as the major cause of Leri–Weill syndrome.
Leri–Weill dyschondrosteosis is characterized by mesomelic short stature, with bowing of the radius more so than the ulna in the forearms and bowing of the tibia while sparing the fibula.
Gerodermia osteodysplastica (GO), also called geroderma osteodysplasticum and Walt Disney dwarfism, is a rare autosomal recessive connective tissue disorder included in the spectrum of cutis laxa syndromes.
Usage of the name "Walt Disney dwarfism" is attributed to the first known case of the disorder, documented in a 1950 journal report, in which the authors described five affected members from a Swiss family as having the physical appearance of dwarves from a Walt Disney film.
The terms "geroderma" or "gerodermia" can be used interchangeably with "osteodysplastica" or "osteodysplasticum", with the term "hereditaria" sometimes appearing at the end.
Acromicric dysplasia is an extremely rare inherited disorder characterized by abnormally short hands and feet, growth retardation and delayed bone maturation leading to short stature. Most cases have occurred randomly for no apparent reason (sporadically). However, autosomal dominant inheritance has not been ruled out.
According to the disease database, Acromicric dysplasia is synonymous with Geleophysic dysplasia
(or Geleophysic Dwarfism) and Focal mucopolysaccharidosis.
Peters plus syndrome (Krause–van Schooneveld–Kivlin syndrome) is a hereditary syndrome that mainly affects the eyes, growth and development of the individual. It is also known as Krause–Kivlin syndrome.
Features of this syndrome include Peters anomaly, leukoma (corneal opacity), central defect of Descemet's membrane, and shallow anterior chamber with synechiae between the iris and cornea. It is associated with short limb dwarfism and delayed mental development.
Krause–van Schooneveld–Kivlin syndrome is listed as a "rare disease" by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH), which means that the syndrome, or a subtype, affects fewer than 200,000 people in the United States.
It is associated with the enzyme "B3GALTL".
It was characterized in 1984 by van Schooneveld.
CAMFAK syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The mutated gene responsible for the disorder is the FGFR3 gene, more specifically; a Lys650Met missense mutation of the FGFR3 gene is what causes SADDAN. This gene codes for the instructions of a protein that is integral in the development and maintenance of bone and brain tissue. Mutations of this gene cause the protein to be overly active, causing many characteristics of this disorder.
SADDAN is an autosomal dominant genetic disorder. Autosomal means that the gene responsible for the mutation and disorder is found on a non-sex chromosome and that either the mother or father can pass on the gene, while dominant means that only one copy of the gene is required for the individual to have the disorder.
Fortunately the disorder is very rare and has only been described in a few number of cases worldwide. While the disorder can be genetically inherited, no instances of inheritance have been recorded as of yet. Rather, of the few cases documented, the individual affected by the disorder is affected as a product of a random mutation, also called a de novo mutation, of the FGFR3 gene only, not by inheritance of the mutated gene.