Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Gilbert's syndrome and G6PD deficiency occurring together especially increases the risk for kernicterus.
Unconjugated hyperbilirubinemia during the neonatal period describes the history of nearly all individuals who suffer from kernicterus. It is thought that the blood–brain barrier is not fully functional in neonates and therefore bilirubin is able to cross the barrier. Moreover, neonates have much higher levels of bilirubin in their blood due to:
1. Although the severe anemia of erythroblastosis fetalis is usually the cause of death, many children who barely survive the anemia exhibit permanent mental impairment or damage to motor areas of the brain because of precipitation of bilirubin in the neuronal cells, causing destruction of many, a condition called kernicterus. The rapid breakdown of fetal red blood cells immediately prior to birth (and subsequent replacement by normal adult human red blood cells). This breakdown of fetal red blood cells releases large amounts of bilirubin. Following on from this
2. Neonates cannot metabolize and eliminate bilirubin. The sole path for bilirubin elimination is through the uridine diphosphate glucuronosyltransferase isoform 1A1 (UGT1A1) proteins that perform a (SN2 conjugation) reaction called "glucuronidation". This reaction adds a large sugar to the bilirubin and makes it more water-soluble, so more readily excreted via the urine and/or the feces. The UGT1A1 enzymes are present, but not active until several months after birth in the newborn liver. Apparently, this is a developmental compromise since the maternal liver and placenta perform glucuronidation for the fetus. In the early 1980s a late-fetal change (30 – 40 weeks of gestation) in hepatic UGT1A1 (from 0.1% to 1.0% of adult activity levels) and post-natal changes that are related to birth age not gestational age were reported. Similar development of activities to pan-specific substrates were observed except for serotonin (1A4), where adult activities were observed in fetal (16 – 25 weeks) and neonatal liver up to 10 days old. More recently, individual UGT isoform development in infants and young children, including two fetal liver samples, were analyzed and showed that pediatric levels of mRNA and protein for UGT1A1 did not differ from adults, but activities were lower. Hence, the effects of UGT1A1 developmental delay in activation have been illuminated over the last 20–30 years. The molecular mechanism(s) for activating UGT1A1 remain unknown.
3. Administration of aspirin to neonates and infants. Aspirin displaces the bilirubin that was non-covalently attached to albumin in the blood stream, thus generating an increased level of free bilirubin which can cross the developing blood brain barrier. This can be life-threatening.
Bilirubin is known to accumulate in the gray matter of neurological tissue where it exerts direct neurotoxic effects. It appears that its neurotoxicity is due to mass-destruction of neurons by apoptosis and necrosis.
In those with cirrhosis, the risk of developing hepatic encephalopathy is 20% per year, and at any time about 30–45% of people with cirrhosis exhibit evidence of overt encephalopathy. The prevalence of minimal hepatic encephalopathy detectable on formal neuropsychological testing is 60–80%; this increases the likelihood of developing overt encephalopathy in the future. Once hepatic encephalopathy has developed, the prognosis is determined largely by other markers of liver failure, such as the levels of albumin (a protein produced by the liver), the prothrombin time (a test of coagulation, which relies on proteins produced in the liver), the presence of ascites and the level of bilirubin (a breakdown product of hemoglobin which is conjugated and excreted by the liver). Together with the severity of encephalopathy, these markers have been incorporated into the Child-Pugh score; this score determines the one- and two-year survival and may assist in a decision to offer liver transplantation.
In acute liver failure, the development of severe encephalopathy strongly predicts short-term mortality, and is almost as important as the nature of the underlying cause of the liver failure in determining the prognosis. Historically, widely used criteria for offering liver transplantation, such as King's College Criteria, are of limited use and recent guidelines discourage excessive reliance on these criteria. The occurrence of hepatic encephalopathy in people with Wilson's disease (hereditary copper accumulation) and mushroom poisoning indicates an urgent need for a liver transplant.
Prolonged hyperbilirubinemia (severe jaundice) can result in chronic bilirubin encephalopathy (kernicterus). Quick and accurate treatment of neonatal jaundice helps to reduce the risk of neonates developing kernicterus.
Infants with kernicterus may have a fever or seizures. High pitched crying is an effect of kernicterus. Scientists used a computer to record and measure cranial nerves 8, 9 and 12 in 50 infants who were divided into two groups equally depending upon bilirubin concentrations. Of the 50 infants, 43 had tracings of high pitched crying.
Exchange transfusions performed to lower high bilirubin levels are an aggressive treatment.
Overall, the relative incidence of neonatal encephalopathy is estimated to be between 2 and 9 per 1000 term births. 40% to 60% of affected infants die by 2 years old or have severe disabilities. In 2013 it was estimated to have resulted in 644,000 deaths down from 874,000 deaths in 1990.
Much like with phototherapy the level at which exchange transfusion should occur depends on the health status and age of the newborn. It should however be used for any newborn with a total serum bilirubin of greater than 428 μmol/l ( 25 mg/dL ).
In a small proportion of cases, the encephalopathy is caused directly by liver failure; this is more likely in acute liver failure. More commonly, especially in chronic liver disease, hepatic encephalopathy is triggered by an additional cause, and identifying these triggers can be important to treat the episode effectively.
Hepatic encephalopathy may also occur after the creation of a transjugular intrahepatic portosystemic shunt (TIPS). This is used in the treatment of refractory ascites, bleeding from oesophageal varices and hepatorenal syndrome. TIPS-related encephalopathy occurs in about 30% of cases, with the risk being higher in those with previous episodes of encephalopathy, higher age, female sex and liver disease due to causes other than alcohol.
Chemotherapy medication, for example, fludarabine can cause a
permanent severe global encephalopathy. Ifosfamide can cause
a severe encephalopathy (but it can be reversible with stop using the drug and the use of methylene blue). Bevacizumab and other anti–vascular endothelial growth factor medication can cause posterior reversible encephalopathy syndrome.
There are many types of encephalopathy. Some examples include:
- Mitochondrial encephalopathy: Metabolic disorder caused by dysfunction of mitochondrial DNA. Can affect many body systems, particularly the brain and nervous system.
- Glycine encephalopathy: A genetic metabolic disorder involving excess production of glycine.
- Hepatic encephalopathy: Arising from advanced cirrhosis of the liver.
- Hypoxic ischemic encephalopathy: Permanent or transitory encephalopathy arising from severely reduced oxygen delivery to the brain.
- Static encephalopathy: Unchanging, or permanent, brain damage.
- Uremic encephalopathy: Arising from high levels of toxins normally cleared by the kidneys—rare where dialysis is readily available.
- Wernicke's encephalopathy: Arising from thiamine (B) deficiency, usually in the setting of alcoholism.
- Hashimoto's encephalopathy: Arising from an auto-immune disorder.
- Hypertensive encephalopathy: Arising from acutely increased blood pressure.
- Chronic traumatic encephalopathy: Progressive degenerative disease associated with multiple concussions and other forms of brain injury.
- Lyme encephalopathy: Arising from Lyme disease bacteria, including "Borrelia burgdorferi".
- Toxic encephalopathy: A form of encephalopathy caused by chemicals, often resulting in permanent brain damage.
- Toxic-Metabolic encephalopathy: A catch-all for brain dysfunction caused by infection, organ failure, or intoxication.
- Transmissible spongiform encephalopathy: A collection of diseases all caused by prions, and characterized by "spongy" brain tissue (riddled with holes), impaired locomotion or coordination, and a 100% mortality rate. Includes bovine spongiform encephalopathy (mad cow disease), scrapie, and kuru among others.
- Neonatal encephalopathy (hypoxic-ischemic encephalopathy): An obstetric form, often occurring due to lack of oxygen in bloodflow to brain-tissue of the fetus during labour or delivery.
- Salmonella encephalopathy: A form of encephalopathy caused by food poisoning (especially out of peanuts and rotten meat) often resulting in permanent brain damage and nervous system disorders.
- Encephalomyopathy: A combination of encephalopathy and myopathy. Causes may include mitochondrial disease (particularly MELAS) or chronic hypophosphatemia, as may occur in cystinosis.
- Creutzfeldt–Jakob disease (CJD; transmissible spongiform encephalopathy).
- HIV encephalopathy (encephalopathy associated with HIV infection and AIDS, characterized by atrophy and ill-defined white matter hyperintensity).
- Sepsis-associated encephalopathy (this type can occur in the setting of apparent sepsis, trauma, severe burns, or trauma, even without clear identification of an infection).
- Epileptic encephalopathies:
- Early infantile epileptic encephalopathy (acquired or congenital abnormal cortical development).
- Early myoclonic epileptic encephalopathy (possibly due to metabolic disorders).
HIE is a major predictor of neurodevelopmental disability in term infants. 25 percent have permanent neurological deficits.
It can result in developmental delay or periventricular leukomalacia.
The prognosis is very poor. Two studies reported typical age of deaths in infancy or early childhood, with the first reporting a median age of death of 2.6 for boys and less than 1 month for girls.
Acute fatty liver of pregnancy is a rare condition and occurs in approximately one in 7,000 to one in 15,000 pregnancies. The mortality from acute fatty liver of pregnancy has been reduced significantly to 18%, and is now related primarily to complications, particularly DIC (Disseminated Intravascular Coagulation) and infections. After delivery, most mothers do well, as the stimulus for fatty acid overload is removed. The disease can recur in future pregnancies, with a calculated genetic chance of 25%; the actual rate is lower, however. Mortality of the foetus has also diminished significantly, but still remains 23%, and may be related to the need for premature delivery.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Complications of HDN could include kernicterus, hepatosplenomegaly, inspissated (thickened or dried) bile syndrome and/or greenish staining of the teeth, hemolytic anemia and damage to the liver due to excess bilirubin. Similar conditions include acquired hemolytic anemia, congenital toxoplasma and syphilis infection, congenital obstruction of the bile duct and cytomegalovirus infection.
- High at birth or rapidly rising bilirubin
- Prolonged hyperbilirubinemia
- Bilirubin Induced Neuorlogical Dysfunction
- Cerebral Palsy
- Kernicterus
- Neutropenia
- Thrombocytopenia
- Hemolytic Anemia - MUST NOT be treated with iron
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.
Toxic encephalopathy is often irreversible. If the source of the problem is treated by removing the toxic chemical from the system, further damage can be prevented, but prolonged exposure to toxic chemicals can quickly destroy the brain. Long term studies have demonstrated residual cognitive impairment (primarily attention and information-processing impairment resulting in dysfunction in working memory) up to 10 years following cessation of exposure. Severe cases of toxic encephalopathy can be life-threatening.
Historically mortality has been high, being in excess of 80%. In recent years the advent of liver transplantation and multidisciplinary intensive care support have improved survival significantly. At present overall short-term survival with transplant is more than 65%.
Several prognostic scoring systems have been devised to predict mortality and to identify who will require an early liver transplant. These include King's College Hospital criteria, MELD score, APACHE II, and Clichy criteria.
The prognosis for people with ALD depends on the liver histology as well as cofactors, such as concomitant chronic viral hepatitis. Among patients with alcoholic hepatitis, progression to liver cirrhosis occurs at 10–20% per year, and 70% will eventually develop cirrhosis. Despite cessation of alcohol use, only 10% will have normalization of histology and serum liver enzyme levels. As previously noted, the MDF has been used to predict short-term mortality (i.e., MDF ≥ 32 associated with spontaneous survival of 50–65% without corticosteroid therapy, and MDF 11) and 90-day (MELD > 21) mortality. Liver cirrhosis develops in 6–14% of those who consume more than 60–80 g of alcohol daily for men and more than 20 g daily for women. Even in those who drink more than 120 g daily, only 13.5% will suffer serious alcohol-related liver injury. Nevertheless, alcohol-related mortality was the third leading cause of death in 2003 in the United States. Worldwide mortality is estimated to be 150,000 per year.
Wernicke's encephalopathy has classically been thought of as a disease solely of alcoholics, but it is also found in the chronically undernourished, and in recent years had been discovered post bariatric surgery. Without being exhaustive, the documented causes of Wernicke's encephalopathy have included:
- pancreatitis, liver dysfunction, chronic diarrhea, celiac disease, Crohn's disease, uremia, thyrotoxicosis
- vomiting, hyperemesis gravidarum, malabsorption, gastrointestinal surgery or diseases
- incomplete parenteral nutrition, starvation/fasting
- chemotherapy, renal dialysis, diuretic therapy, stem cell/marrow transplantation
- cancer, AIDS, Creutzfeldt–Jakob disease, febrile infections
- this disease may even occur in some people with normal, or even high blood thiamine levels, are people with deficiencies in intracellular transport of this vitamin. Selected genetic mutations, including presence of the X-linked transketolase-like 1 gene, SLC19A2 thiamine transporter protein mutations, and the aldehyde dehydrogenase-2 gene, which may predispose to alcoholism. The APOE epsilon-4 allele, involved in Alzheimer's disease, may increase the chance of developing neurological symptoms.
"Pre-hepaticular" jaundice is caused by anything which causes an increased rate of hemolysis (breakdown of red blood cells). Unconjugated bilirubin comes from the breakdown of the heme pigment found in red blood cells' hemoglobin. The increased breakdown of red blood cells leads to an increase in the amount of unconjugated bilirubin present in the blood and deposition of this unconjugated bilirubin into various tissues can lead to a jaundiced appearance. In tropical countries, severe malaria can cause jaundice in this manner. Certain genetic diseases, such as sickle cell anemia, spherocytosis, thalassemia, pyruvate kinase deficiency, and glucose 6-phosphate dehydrogenase deficiency can lead to increased red cell lysis and therefore hemolytic jaundice. Commonly, diseases of the kidney, such as hemolytic uremic syndrome, can also lead to coloration.
In jaundice secondary to hemolysis, the increased production of bilirubin leads to the increased production of urine-urobilinogen. Bilirubin is not usually found in the urine because unconjugated bilirubin is not water-soluble, so, the combination of increased urine-urobilinogen with no bilirubin (since, unconjugated) in urine is suggestive of hemolytic jaundice.
Laboratory findings include:
- Urine: no bilirubin present, urobilinogen > 2 units (i.e., hemolytic anemia causes increased heme metabolism; exception: infants where gut flora has not developed).
- Serum: increased unconjugated bilirubin.
- Kernicterus is associated with increased unconjugated bilirubin not carried by albumin. Newborns are especially vulnerable to this due to increased permeability of the blood brain barrier.
Common causes for acute liver failure are paracetamol (acetaminophen) overdose, idiosyncratic reaction to medication (e.g. tetracycline, troglitazone), excessive alcohol consumption (severe alcoholic hepatitis), viral hepatitis (hepatitis A or B — it is extremely uncommon in hepatitis C), acute fatty liver of pregnancy, and idiopathic (without an obvious cause). Reye syndrome is acute liver failure in a child with a viral infection (e.g. chickenpox); it appears that aspirin use may play a significant role. Wilson's disease (hereditary copper accumulation) may infrequently present with acute liver failure.
In most cases, liver function will return to normal if the offending drug is stopped early. Additionally, the patient may require supportive treatment. In acetaminophen toxicity, however, the initial insult can be fatal. Fulminant hepatic failure from drug-induced hepatotoxicity may require liver transplantation. In the past, glucocorticoids in allergic features and ursodeoxycholic acid in cholestatic cases had been used, but there is no good evidence to support their effectiveness.
An elevation in serum bilirubin level of more than 2 times ULN with associated transaminase rise is an ominous sign. This indicates severe hepatotoxicity and is likely to lead to mortality in 10% to 15% of patients, especially if the offending drug is not stopped (Hy's Law). This is because it requires significant damage to the liver to impair bilirubin excretion, hence minor impairment (in the absence of biliary obstruction or Gilbert syndrome) would not lead to jaundice. Other poor predictors of outcome are old age, female sex, high AST.
There are no conclusive statistical studies, all figures are based on partial studies, and because of the ethical problems in conducting controlled trials are unlikely to be obtained in the future.
Wernicke´s lesions were observed in 0.8 to 2.8% of the general population autopsies, and 12.5% of alcoholics. This figure increases to 35% of alcoholics if including cerebellar damage due to lack of thiamine.
Most autopsy cases were from alcoholics. Autopsy series were performed in hospitals on the material available which is unlikely to be representative of the entire population. Considering the slight affectations, previous to the generation of observable lesions at necropsy, the percentage should be higher. There is evidence to indicate that Wernicke's encephalopathy is underdiagnosed. For example, in one 1986 study, 80% of cases were diagnosed postmortem. Is estimated that only 5–14% of patients with WE are diagnosed in life.
In a series of autopsy studies held in Recife, Brazil, it was found that only 7 out of 36 had had alcoholic habits, and only a small minority had malnutrition. In a reviewed of 53 published case reports from 2001 to 2011, the relationship with alcohol was also about 20% (10 out of 53 cases).
In this statistic fetal and infant damage with upcoming intellectual limitations should be included. WE is more likely to occur in males than females. Among the minority who are diagnosed, mortality can reach 17%. The main factors triggering death are thought to be infections and liver dysfunctions.
Yellow discoloration of the skin, especially on the palms and the soles, but not of the sclera or inside the mouth is due to carotenemia—a harmless condition.
Examples include arsenic, carbon tetrachloride, and vinyl chloride.
Research is being done by organizations such as NINDS (National Institute of Neurological Disorders and Stroke) on what substances can cause encephalopathy, why they do this, and eventually how to protect, treat, and cure the brain from this condition.