Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A prospective study in 1994 noted that body mass index remains the strongest predictor of symptomatic gallstones among young women. Other risk factors are having over four pregnancies, weight gain, and cigarette smoking. Alcohol was shown to have an inverse relationship between use and gallbladder disease.
Women are almost twice as likely as men to form gallstones especially during the fertile years; the gap narrows after the menopause. The underlying mechanism is female sex hormones; parity, oral contraceptive use and estrogen replacement therapy are established risk factors for cholesterol gallstone formation. Female sex hormones adversely influence hepatic bile secretion and gallbladder function. Estrogens increase cholesterol secretion and diminish bile salt secretion, while progestins act by reducing bile salt secretion and impairing gallbladder emptying leading to stasis. A new 4th generation progestin, drospirenone, used in some oral contraceptives may further heighten the risk of gallstone disease and cholecystectomy; however, the increased risk is quite modest and not likely to be clinically meaningful.
A retrospective (historical) cohort study was performed on a very large data base including 1980 and 1981 Medicaid billing data from the states of Michigan and Minnesota in which 138,943 users of OCs were compared with 341,478 nonusers. Oral contraceptives were shown as risk factors for gallbladder disease, although the risk is of sufficient magnitude to be of potential clinical importance only in young women.
The 1984 Royal College of General Practitioners' Oral Contraception Study suggests that, in the long-term, oral contraceptives are not associated with any increased risk of gallbladder disease, although there is an acceleration of the disease in those women susceptible to it.
Newer research suggests otherwise. A 1993 meta-analysis concludes that oral contraceptive use is associated with a slightly and transiently increased rate of gallbladder disease, but laters confirms that modern low-dose oral contraceptives are safer than older formulas, though an effect cannot be excluded.
A 2001 comparative study of the IMS LifeLink Health Plan Claims Database interpreted that in a large cohort of women using oral contraceptives, there was found a small, statistically significant increase in the risk of gallbladder disease associated with desogestrel, drospirenone and norethisterone compared with levonorgestrel. No statistically significant increase in risk was associated with the other formulations of oral contraceptive (etynodiol diacetate, norgestrel and norgestimate).
Although most patients present without any known risk factors evident, a number of risk factors for the development of cholangiocarcinoma have been described. In the Western world, the most common of these is primary sclerosing cholangitis (PSC), an inflammatory disease of the bile ducts which is closely associated with ulcerative colitis (UC). Epidemiologic studies have suggested that the lifetime risk of developing cholangiocarcinoma for a person with PSC is on the order of 10%–15%, although autopsy series have found rates as high as 30% in this population.
Certain parasitic liver diseases may be risk factors as well. Colonization with the liver flukes "Opisthorchis viverrini" (found in Thailand, Laos PDR, and Vietnam) or "Clonorchis sinensis" (found in China, Taiwan, eastern Russia, Korea, and Vietnam) has been associated with the development of cholangiocarcinoma. Patients with chronic liver disease, whether in the form of viral hepatitis (e.g. hepatitis B or hepatitis C), alcoholic liver disease, or cirrhosis of the liver due to other causes, are at significantly increased risk of cholangiocarcinoma. HIV infection was also identified in one study as a potential risk factor for cholangiocarcinoma, although it was unclear whether HIV itself or other correlated and confounding factors (e.g. hepatitis C infection) were responsible for the association.
Infection with the bacteria "Helicobacter bilis" and "Helicobacter hepaticus" species can cause biliary cancer.
Congenital liver abnormalities, such as Caroli's syndrome (a specific type of five recognized choledochal cysts), have been associated with an approximately 15% lifetime risk of developing cholangiocarcinoma. The rare inherited disorders Lynch syndrome II and biliary papillomatosis have also been found to be associated with cholangiocarcinoma. The presence of gallstones (cholelithiasis) is not clearly associated with cholangiocarcinoma. However, intrahepatic stones (called hepatolithiasis), which are rare in the West but common in parts of Asia, have been strongly associated with cholangiocarcinoma. Exposure to Thorotrast, a form of thorium dioxide which was used as a radiologic contrast medium, has been linked to the development of cholangiocarcinoma as late as 30–40 years after exposure; Thorotrast was banned in the United States in the 1950s due to its carcinogenicity.
The most common physical indications of cholangiocarcinoma are abnormal liver function tests, jaundice (yellowing of the eyes and skin occurring when bile ducts are blocked by tumor), abdominal pain (30%–50%), generalized itching (66%), weight loss (30%–50%), fever (up to 20%), and changes in the color of stool or urine. To some extent, the symptoms depend upon the location of the tumor: patients with cholangiocarcinoma in the extrahepatic bile ducts (outside the liver) are more likely to have jaundice, while those with tumors of the bile ducts within the liver more often have pain without jaundice.
Blood tests of liver function in patients with cholangiocarcinoma often reveal a so-called "obstructive picture," with elevated bilirubin, alkaline phosphatase, and gamma glutamyl transferase levels, and relatively normal transaminase levels. Such laboratory findings suggest obstruction of the bile ducts, rather than inflammation or infection of the liver parenchyma, as the primary cause of the jaundice.
Approximately 15,000 new cases of liver and biliary tract carcinoma are diagnosed annually in the United States, with roughly 10% of these cases being Klatskin tumors. Cholangiocarcinoma accounts for approximately 2% of all cancer diagnoses, with an overall incidence of 1.2/100,000 individuals. Two-thirds of cases occur in patients over the age of 65, with a near ten-fold increase in patients over 80 years of age. The incidence is similar in both men and women.
There is a 2-3:1 male-to-female predilection in primary sclerosing cholangitis. PSC can affect men and women at any age, although it is commonly diagnosed in the fourth decade of life, most often in the presence of inflammatory bowel disease (IBD). PSC progresses slowly and is often asymptomatic, so it can be present for years before it is diagnosed and before it causes clinically significant consequences. There is relatively little data on the prevalence and incidence of primary sclerosing cholangitis, with studies in different countries showing annual incidence of 0.068–1.3 per 100,000 people and prevalence 0.22–8.5 per 100,000; given that PSC is closely linked with ulcerative colitis, it is likely that the risk is higher in populations where UC is more common. In the United States, an estimated 29,000 individuals have PSC.
The development of any of the cancers associated with PSC predicts a poor prognosis. Complications from PSC-associated cancers account for 40% of deaths from PSC. Primary sclerosing cholangitis is one of the major known risk factors for cholangiocarcinoma, a cancer of the biliary tree, for which the lifetime risk among patients with PSC is 10-15%. This represents a 400-fold greater risk of developing cholangiocarcinoma compared to the general population. Surveillance for cholangiocarcinoma in patients with PSC is encouraged, with some experts recommending annual surveillance with a specialized imaging study and serum markers, although consensus regarding the modality and interval has yet to be established. Similarly, a screening colonoscopy is recommended in people who receive a new diagnosis of primary sclerosing cholangitis since their risk of colorectal cancer is 10 times higher than that of the general population.
PSC is strongly associated with inflammatory bowel disease (IBD), in particular ulcerative colitis (UC) and to a lesser extent Crohn's disease. As many as 5% of patients with IBD are co-diagnosed with PSC and approximately 70% of people with PSC have IBD. Of note, the presence of colitis appears to be associated with a greater risk of liver disease progression and bile duct cancer (cholangiocarcinoma) development, although this relationship remains poorly understood. Close monitoring of PSC patients is vital.
Various forms of gallbladder disease such as gallstones and gallbladder polyps are also common in those with PSC. Approximately 25% of people with PSC have gallstones. Ultrasound surveillance of the gallbladder every year is recommended for people with PSC. Any person with PSC who is found to have a mass in the gallbladder should undergo surgical removal of the gallbladder due to the high risk of cholangiocarcinoma. Osteoporosis (hepatic osteodystrophy) and hypothyroidism are also associated with PSC.
Because of their location, these tumors tend to become symptomatic late in their development and therefore are not usually resectable at the time of presentation. This is variable as, due to obstruction, jaundice may present early and compel the patient to seek help. Complete resection of the tumor offers hope of long-term survival, and of late there has been renewed interest in liver transplantation from deceased donors along with add on therapy. Prognosis remains poor.
Gallstone risk increases for females (especially before menopause) and for people near or above 40 years; the condition is more prevalent among both North and South Americans and among those of European descent than among other ethnicities. A lack of melatonin could significantly contribute to gallbladder stones, as melatonin inhibits cholesterol secretion from the gallbladder, enhances the conversion of cholesterol to bile, and is an antioxidant, which is able to reduce oxidative stress to the gallbladder. Researchers believe that gallstones may be caused by a combination of factors, including inherited body chemistry, body weight, gallbladder motility (movement), and low calorie diet. The absence of such risk factors does not, however, preclude the formation of gallstones.
Nutritional factors that may increase risk of gallstones include constipation; eating fewer meals per day; low intake of the nutrients folate, magnesium, calcium, and vitamin C; low fluid consumption; and, at least for men, a high intake of carbohydrate, a high glycemic load, and high glycemic index diet. Wine and whole-grained bread may decrease the risk of gallstones.
Rapid weight loss increases risk of gallstones. Patients taking orlistat, a weight loss drug, may already be at increased risk for the formation of gallstones. Weight loss with orlistat can increase the risk of gallstones. On the contrary, ursodeoxycholic acid (UDCA), a bile acid, also a drug marketed as Ursodiol, appears to prevent formation of gallstones during weight loss. A high fat diet during weight loss also appears to prevent gallstones.
Cholecystokinin deficiency caused by celiac disease increases risk of gallstone formation, especially when diagnosis of celiac disease is delayed.
Pigment gallstones are most commonly seen in the developing world. Risk factors for pigment stones include hemolytic anemias (such as from sickle-cell disease and hereditary spherocytosis), cirrhosis, and biliary tract infections. People with erythropoietic protoporphyria (EPP) are at increased risk to develop gallstones. Additionally, prolonged use of proton pump inhibitors has been shown to decrease gallbladder function, potentially leading to gallstone formation.
Cholesterol modifying medications can affect gallstone formation. Statins inhibit cholesterol synthesis and there is evidence that their use may decrease the risk of getting gallstones. Fibrates increase cholesterol concentration in bile and their use has been associated with an increased risk of gallstones.
In addition to virus-related cirrhosis described above, other causes of cirrhosis can lead to HCC. Alcohol intake correlates with risk of HCC, and the risk is far greater in individuals with an alcohol-induced cirrhotic liver. There are a few disorders that are known to cause cirrhosis and lead to cancer, including hereditary hemochromatosis and primary biliary cirrhosis.
Aflatoxin exposure can lead to the development of HCC. The aflatoxins are a group of chemicals produced by the fungi "Aspergillus flavus" (the name comes from "A. flavus" toxin) and "A. parasiticus". Food contamination by the fungi leads to ingestion of the chemicals, which are very toxic to the liver. Common foodstuffs contaminated with the toxins are cereals, peanuts and other vegetables. Contamination of food is common in Africa, South-East Asia and China. Concurrent HBV infection and aflatoxin exposure increases the risk of liver cancer to over three times that seen in HBV infected individuals without aflatoxin exposure. The mechanism by which aflatoxins cause cancer is through genetic mutation of a gene required for the prevention of cancer: p53.
Mortality is indirect and caused by complications. After cholangitis occurs, patients typically die within 5–10 years.
Acute cholangitis carries a significant risk of death, the leading cause being irreversible shock with multiple organ failure (a possible complication of severe infections). Improvements in diagnosis and treatment have led to a reduction in mortality: before 1980, the mortality rate was greater than 50%, but after 1980 it was 10–30%. Patients with signs of multiple organ failure are likely to die unless they undergo early biliary drainage and treatment with systemic antibiotics. Other causes of death following severe cholangitis include heart failure and pneumonia.
Risk factors indicating an increased risk of death include older age, female gender, a history of liver cirrhosis, biliary narrowing due to cancer, acute renal failure and the presence of liver abscesses. Complications following severe cholangitis include renal failure, respiratory failure (inability of the respiratory system to oxygenate blood and/or eliminate carbon dioxide), cardiac arrhythmia, wound infection, pneumonia, gastrointestinal bleeding and myocardial ischemia (lack of blood flow to the heart, leading to heart attacks).
In the Western world, about 15% of all people have gallstones in their gallbladder but the majority are unaware of this and have no symptoms. Over ten years, 15–26% will suffer one or more episodes of biliary colic (abdominal pain due to the passage of gallstones through the bile duct into the digestive tract), and 2–3% will develop complications of obstruction: acute pancreatitis, cholecystitis or acute cholangitis. Prevalence of gallstone disease increases with age and body mass index (a marker of obesity). However, the risk is also increased in those who lose weight rapidly (e.g. after weight loss surgery) due to alterations in the composition of the bile that makes it prone to form stones. Gallstones are slightly more common in women than in men, and pregnancy increases the risk further.
Most tumors are adenocarcinomas, with a small percent being squamous cell carcinomas.
- Rare tumor, the U.S. incidence is 3 cases per 100,000 people each year
- Gallbladder cancer is more common in South American countries, Japan, and Israel. In Chile gallbladder cancer is the fourth most common cause of cancer deaths.
- 5th most common gastrointestinal cancer
- Up to 5 times more common in women than men depending on population (e.g. 73% female in China ).
- The age adjusted incidence rates of gall bladder cancer is highest in Chile followed by In the state of Assam in India
Caroli disease is typically found in Asia, and diagnosed in persons under the age of 22. Cases have also been found in infants and adults. As medical imaging technology improves, diagnostic age decreases.
The cancer commonly spreads to the liver, bile duct, stomach, and duodenum.
Biliary atresia seems to affect females slightly more often than males, and Asians and African Americans more often than Caucasians. It is common for only one child in a pair of twins or within the same family to have the condition. There seems to be no link to medications or immunizations given immediately before or during pregnancy. Diabetes during pregnancy particularly during the first trimester seems to predispose to a number of distinct congenital abnormalities in the infant such as sacral agenesis and the syndromic form of biliary atresia.
Cholesterol gallstones develop when bile contains too much cholesterol and not enough bile salts. Besides a high concentration of cholesterol, two other factors are important in causing gallstones. The first is how often and how well the gallbladder contracts; incomplete and infrequent emptying of the gallbladder may cause the bile to become overconcentrated and contribute to gallstone formation. This can be caused by high resistance to the flow of bile out of the gallbladder due to the complicated internal geometry of the cystic duct. The second factor is the presence of proteins in the liver and bile that either promote or inhibit cholesterol crystallization into gallstones. In addition, increased levels of the hormone estrogen, as a result of pregnancy or hormone therapy, or the use of combined (estrogen-containing) forms of hormonal contraception, may increase cholesterol levels in bile and also decrease gallbladder movement, resulting in gallstone formation.
Chronic liver diseases like chronic hepatitis, chronic alcohol abuse or chronic toxic liver disease may cause
- liver failure and hepatorenal syndrome
- fibrosis and cirrhosis of liver
Cirrhosis may also occur in primary biliary cirrhosis. Rarely, cirrhosis is congenital.
These differ according to the type of chronic liver disease.
- Excessive alcohol use
- Obesity
- Metabolic syndrome including raised blood lipids
- Health care professionals who are exposed to body fluids and infected blood
- Sharing infected needle and syringes
- Having unprotected sex and multiple sex partners
- Working with toxic chemicals without wearing safety clothes
- Certain prescription medications
Possible causes:
- pregnancy
- androgens
- birth control pills
- antibiotics (such as TMP/SMX)
- abdominal mass (e.g. cancer)
- biliary atresia and other pediatric liver diseases
- biliary trauma
- congenital anomalies of the biliary tract
- gallstones
- acute hepatitis
- cystic fibrosis
- intrahepatic cholestasis of pregnancy (obstetric cholestasis)
- primary biliary cirrhosis, an autoimmune disorder
- primary sclerosing cholangitis, associated with inflammatory bowel disease
- some drugs (e.g. flucloxacillin and erythromycin)
Drugs such as gold salts, nitrofurantoin, anabolic steroids, chlorpromazine, prochlorperazine, sulindac, cimetidine, erythromycin, estrogen, and statins can cause cholestasis and may result in damage to the liver.
Malignant neoplasm of liver and intrahepatic bile ducts. The most frequent forms are metastatic malignant neoplasm of liver)
- liver cell carcinoma
- hepatocellular carcinoma
- hepatoma
- cholangiocarcinoma
- hepatoblastoma
- angiosarcoma of liver
- Kupffer cell sarcoma
- other sarcomas of liver
Benign neoplasm of liver include hepatic hemangiomas, hepatic adenomas, and focal nodular hyperplasia (FNH).
Some cases of biliary atresia may result from exposure to aflatoxin B1, and to a lesser extent aflatoxin B2 during late pregnancy. Intact maternal detoxification protects baby during intrauterine life, yet after delivery the baby struggles with the aflatoxin in its blood and liver. Moreover, the baby feeds aflatoxin M1 from its mom, as aflatoxin M1 is the detoxification product of aflatoxin B1. It is a milder toxin that causes cholangitis in the baby.
There are isolated examples of biliary atresia in animals. For instance, lambs born to sheep grazing on land contaminated with a weed (Red Crumbweed) developed biliary atresia at certain times. The plants were later found to contain a toxin, now called biliatresone Studies are ongoing to determine whether there is a link between human cases of biliary atresia and toxins such as biliatresone. There are some indications that a metabolite of certain human gut bacteria may be similar to biliatresone.
Hepatolithiasis is the presence of gallstones in the biliary ducts of the liver. Treatment is usually surgical. It is rare in Western countries, but prevalent in East Asia.
The gallstones are normally found proximal to the left and right hepatic ducts. The causes of the disease are poorly understood, but it is suspected that genetics, diets and environmental causes may contribute. It is more common in those of low socioeconomic status who suffer from malnutrition. Typically is strikes between 50 and 70 years old, with neither men nor women more likely to acquire it.
The prevalence in east Asia ranges is as high as 30-50%, while in the west it is rare. However, immigration has increased its prevalence in the West. Countries that have seen more economic development have also seen a reduction in the rates of the disease.
Some patients have these gallstones with no symptoms and the disease is only detected through abdominal imaging. For those with symptoms, common ones are abdominal pain, jaundice and fever. The gallstones can cause more serious conditions like fibrinolys disorder or gallstone pancreatitis.