Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Stenosing tenosynovitis is most commonly caused by overuse from chronic repetitive activities using the hand or the involved finger. Examples include work activities (e.g., computer use, materials handling) or recreational activities (e.g., knitting, golf, racket sports). Carpenters who use hammers suffer from this as well as those who continuously grip wood or other materials when cutting them due to having to use your hands as a clamp to hold things in place.
Primary stenosing tenosynovitis can be idiopathic, occurring in middle age women more frequently than in men, but can present also in infancy.
Secondary stenosing tenosynovitis can be caused by disease or entities that cause connective tissue disorders including the following:
- Rheumatoid arthritis and psoriatic arthritis—therefore the clinician must assess the hands for rheumatologic deformities.
- Gout
- Diabetes mellitus
- Amyloidosis
- Systemic lupus erythematosus
Others causes may include the following:
- Direct trauma to the site
- During the postpartum period
- Congenital
The cause of trigger finger is unclear but several causes have been proposed. It has also been called stenosing tenosynovitis (specifically "digital tenosynovitis stenosans"), but this may be a misnomer, as inflammation is not a predominant feature.
It has been speculated that repetitive forceful use of a digit leads to narrowing of the fibrous digital sheath in which it runs, but there is little scientific data to support this theory. The relationship of trigger finger to work activities is debatable and scientific evidence for and against hand use as a cause exist. While the mechanism is unclear, there is some evidence that triggering of the thumb is more likely to occur following surgery for carpal tunnel syndrome. It may also occur in rheumatoid arthritis.
About 1.8 million people go to the emergency department each year due to hand injuries.
Several risk factors of CMC OA of the thumb are known. Each of these risk factors does not cause CMC OA by itself, but acts as a predisposing factor influencing the process of OA in some way. Risk factors include: female gender, suffering from obesity, repetitive heavy manual labor, familial predisposition and hormonal changes, such as menopause.
CMC OA is the most common form of OA affecting the hand. Dahaghin et al. showed that about 15% of women and 7% of men between 50 and 60 years of age suffer from CMC OA of the thumb. However, in about 65% of people older than 55 years, radiologic evidence of OA was present without any symptoms. Armstrong et al. reported a prevalence of 33% in postmenopausal women, of which one third was symptomatic, compared to 11% in men older than 55 years. This shows CMC OA of the thumb is significantly more prevalent in women, especially in postmenopausal women, compared to men.
The natural history of disease for trigger finger remains uncertain.
There is some evidence that idiopathic trigger finger behaves differently in people with diabetes.
Recurrent triggering is unusual after successful injection and rare after successful surgery.
While difficulty extending the proximal interphalangeal joint may persist for months, it benefits from exercises to stretch the finger straighter.
It is unclear whether the cause of the trigger thumb is congenital or acquired. The occurrence of bilateral incidence and trigger thumbs in both children of twins are an indication for a congenital cause. Trigger thumb in children is also associated with trisomy of chromosome 13. For these reasons it was assumed that trigger thumbs in children are to be of congenital cause. However, more and more evidence which point towards an acquired cause have been found in recent studies. Therefore the name pediatric trigger thumb is also widely used (and currently preferred by some) for the same disorder.
Not much research has been done on the epidemiology of congenital trigger thumbs. There are a few reports on the incidence in their respective studies. The most recent data comes from a Japanese study by Kukichi and Ogino where they found an incidence 3.3 trigger thumbs per 1,000 live births in 1 year old children.
Most hand injuries are minor and can heal without difficulty. However, any time the hand or finger is cut, crushed or the pain is ongoing, it is best to see a physician. Hand injuries when not treated on time can result in long term morbidity.
Antibiotics in simple hand injuries do not typically require antibiotics as they do not change the chance of infection.
The cause of de Quervain's disease is not established. Evidence regarding a possible relation with occupational risk factors is debated. A systematic review of potential risk factors discussed in the literature did not find any evidence of a causal relationship with occupational factors. However, researchers in France found personal and work-related factors were associated with de Quervain's disease in the working population; wrist bending and movements associated with the twisting or driving of screws were the most significant of the work-related factors. Proponents of the view that De Quervain syndrome is a repetitive strain injury consider postures where the thumb is held in abduction and extension to be predisposing factors. Workers who perform rapid repetitive activities involving pinching, grasping, pulling or pushing have been considered at increased risk. Specific activities that have been postulated as potential risk factors include intensive computer mouse use, trackball use, and typing, as well as some pastimes, including bowling, golf, fly-fishing, piano-playing, sewing, and knitting.
Women are affected more often than men. The syndrome commonly occurs during and after pregnancy. Contributory factors may include hormonal changes, fluid retention and—more debatably—lifting.
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
Stenosing tenosynovitis (also known as trigger finger or trigger thumb) is a painful condition caused by the inflammation (tenosynovitis) and progressive restriction of the superficial and deep flexors fibrous tendon sheath adjacent to the A1 pulley at a metacarpal head. Repetitive forceful compression, tensile stress, and resistive flexion, causes inflammation, swelling, and microtrauma, that results in thickening (commonly a nodular formation) of the tendon distal to the pulley and stenosis of the tendon sheath leading to a painful digital base, limitation of finger movements, triggering, snapping, locking, and deformity progressively.
Patients report a popping sound at the proximal interphalangeal joint (PIP), morning stiffness with/without triggering, delayed and sometimes painful extension of the digit, and when more advanced, a locking position that requires manipulation to extend the affected finger. This condition more commonly affects the middle and ring fingers (occasionally the thumb), and the flexor rather than extensor tendons in the hand.
In rheumatic trigger finger (or in diabetes), more than one finger may be involved. Cases of stenosing peroneal tenosynovitis, have been reported where the patient presents with pain over the lateral malleolus, both with active and passive range of motion and no physical of radiographic evidence of instability.
The international debate regarding the relationship between CTS and repetitive motion in work is ongoing. The Occupational Safety and Health Administration (OSHA) has adopted rules and regulations regarding cumulative trauma disorders. Occupational risk factors of repetitive tasks, force, posture, and vibration have been cited.
The relationship between work and CTS is controversial; in many locations, workers diagnosed with carpal tunnel syndrome are entitled to time off and compensation.
Some speculate that carpal tunnel syndrome is provoked by repetitive movement and manipulating activities and that the exposure can be cumulative. It has also been stated that symptoms are commonly exacerbated by forceful and repetitive use of the hand and wrists in industrial occupations, but it is unclear as to whether this refers to pain (which may not be due to carpal tunnel syndrome) or the more typical numbness symptoms.
A review of available scientific data by the National Institute for Occupational Safety and Health (NIOSH) indicated that job tasks that involve highly repetitive manual acts or specific wrist postures were associated with incidents of CTS, but causation was not established, and the distinction from work-related arm pains that are not carpal tunnel syndrome was not clear. It has been proposed that repetitive use of the arm can affect the biomechanics of the upper limb or cause damage to tissues. It has also been proposed that postural and spinal assessment along with ergonomic assessments should be included in the overall determination of the condition. Addressing these factors has been found to improve comfort in some studies. A 2010 survey by NIOSH showed that 2/3 of the 5 million carpal tunnel cases in the US that year were related to work. Women have more work-related carpal tunnel syndrome than men.
Speculation that CTS is work-related is based on claims such as CTS being found mostly in the working adult population, though evidence is lacking for this. For instance, in one recent representative series of a consecutive experience, most patients were older and not working. Based on the claimed increased incidence in the workplace, arm use is implicated, but the weight of evidence suggests that this is an inherent, genetic, slowly but inevitably progressive idiopathic peripheral mononeuropathy.
"Infant’s persistent thumb-clutched hand, flexion-adduction deformity of the thumb, pollex varus, thumb in the hand deformity."
Congenital clasped thumb describes an anomaly which is characterized by a fixed thumb into the palm at the metacarpophalangeal joint in one or both hands.
The incidence and genetic background are unknown. A study of Weckesser et al. showed that boys are twice as often affected with congenital clasped thumb compared to girls. The anomaly is in most cases bilateral (present in both hands).
A congenital clasped thumb can be an isolated anomaly, but can also be attributed to several syndromes.
Malformations of the upper extremities can occur In the third to seventh embryonic week. In some cases the TPT is hereditary. In these cases, there is a mutation on chromosome 7q36. If the TPT is hereditary, it is mostly inherited as an autosomal dominant trait, non-opposable and bilateral. The sporadic cases are mostly opposable and unilateral.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
Most people relieved of their carpal tunnel symptoms with conservative or surgical management find minimal residual or "nerve damage". Long-term chronic carpal tunnel syndrome (typically seen in the elderly) can result in permanent "nerve damage", i.e. irreversible numbness, muscle wasting, and weakness. Those that undergo a carpal tunnel release are nearly twice as likely as those not having surgery to develop trigger thumb in the months following the procedure.
While outcomes are generally good, certain factors can contribute to poorer results that have little to do with nerves, anatomy, or surgery type. One study showed that mental status parameters or alcohol use yields much poorer overall results of treatment.
Recurrence of carpal tunnel syndrome after successful surgery is rare.
In most people, ligaments (which are the tissues that connect bones to each other) are naturally tight in such a way that the joints are restricted to 'normal' ranges of motion. This creates normal joint stability. If muscular control does not compensate for ligamentous laxity, joint instability may result. The trait is almost certainly hereditary, and is usually something the affected person would just be aware of, rather than a serious medical condition. However, if there is widespread laxity of other connective tissue, then this may be a sign of Ehlers-Danlos syndrome.
Ligamentous laxity may also result from injury, such as from a vehicle accident. It can result from whiplash and be overlooked for years by doctors who are not looking for it, despite the chronic pain that accompanies the resultant spinal instability. Ligamentous laxity will show up on an upright magnetic resonance imaging (MRI), the only kind of MRI that will show soft tissue damage. It can be seen in standing stress radiographs in flexion, extension, and neutral views as well, and also digital motion X-ray, or DMX.
An advantage to having lax ligaments and joints is the ability to withstand pain from hyperextension; however, this is also a disadvantage as a lack of perceived pain can prevent a person from removing the ligament from insult, leading to ligament damage. This can also lead to death if you tear the wrong ligament. People with hypermobile joints (or "double-jointed" people), almost by definition, have lax ligaments.
As with many musculoskeletal conditions, the management of de Quervain's disease is determined more by convention than scientific data. From the original description of the illness in 1895 until the first description of corticosteroid injection by Jarrod Ismond in 1955, it appears that the only treatment offered was surgery. Since approximately 1972, the prevailing opinion has been that of McKenzie (1972) who suggested that corticosteroid injection was the first line of treatment and surgery should be reserved for unsuccessful injections. A systematic review and meta-analysis published in 2013 found that corticosteroid injection seems to be an effective form of conservative management of de Quervain's syndrome in approximately 50% of patients, although more research is needed regarding the extent of any clinical benefits. Efficacy data are relatively sparse and it is not clear whether benefits affect the overall natural history of the illness.
Most tendinoses are self-limiting and the same is likely to be true of de Quervain's although further study is needed.
Palliative treatments include a splint that immobilized the wrist and the thumb to the interphalangeal joint and anti-inflammatory medication or acetaminophen. Systematic review and meta-analysis do not support the use of splinting over steroid injections.
Surgery (in which the sheath of the first dorsal compartment is opened longitudinally) is documented to provide relief in most patients. The most important risk is to the radial sensory nerve.
Some occupational and physical therapists suggest alternative lifting mechanics based on the theory that the condition is due to repetitive use of the thumbs during lifting. Physical/Occupational therapy can suggest activities to avoid based on the theory that certain activities might exacerbate one's condition, as well as instruct on strengthening exercises based on the theory that this will contribute to better form and use of other muscle groups, which might limit irritation of the tendons.
Some occupational and physical therapists use other treatments, in conjunction with Therapeutic Exercises, based on the rationale that they reduce inflammation and pain and promote healing: UST, SWD, or other deep heat treatments, as well as TENS, acupuncture, or infrared light therapy, and cold laser treatments. However, the pathology of the condition is not inflammatory changes to the synovial sheath and inflammation is secondary to the condition from friction. Teaching patients to reduce their secondary inflammation does not treat the underlying condition but may reduce their pain; which is helpful when trying to perform the prescribed exercise interventions.
Getting Physical Therapy before surgery or injections has been shown to reduce overall costs to patients and is a viable option to treat a wide array of musculoskeletal injuries.
The ulnar collateral ligament is an important stabilizer of the thumb. Thumb instability resulting from disruption of the UCL profoundly impairs the overall function of the involved hand. Because of this, it is critical that these injuries receive appropriate attention and treatment.
Most gamekeeper's thumb injuries are treated by simply immobilizing the joint in a thumb spica splint or a modified wrist splint and allowing the ligament to heal. However, near total or total tears of the UCL may require surgery to achieve a satisfactory repair, especially if accompanied by a Stener lesion.
Nintendo thumb, also known as gamer's grip, Nintendonitis and similar names, is a video game-related health problem classified as a form of repetitive strain injury (RSI). The symptoms are the blistering, paraesthesia and swelling of the thumbs, mainly through use of the D-pad, though any finger can be affected. This can lead to stress on tendons, nerves and ligaments in the hands, and further onto lateral epicondylitis ("tennis elbow"), tendinitis, bursitis and carpal tunnel syndrome (CTS).
Some of the symptoms are described under trigger finger.
Originally known in a video gaming context as "Leather Thumb", this condition was known to occur frequently among users of 2nd generation video game consoles such as the Intellivision or the Atari 2600 in the late 1970s and early 1980s. The condition was first highlighted when the Nintendo games consoles were released, leading to reported cases of RSI, primarily in children (being one of the primary audiences of early-generation videogames). Later, the controllers for the Sony PlayStation and PlayStation 2 were noted as causing the condition. However, due to the shape, size and extended use of game controllers it is not limited to just those specific ones and can occur in users of any gamepad or joystick. Similar problems have also been observed with the use of mobile phones, and text messaging in particular (see Blackberry thumb).
Gamekeeper's thumb and skier's thumb are two similar conditions, both of which involve insufficiency of the ulnar collateral ligament (UCL) of the thumb. The chief difference between these two conditions is that Skier's thumb is generally considered to be an acute condition acquired after a fall or similar abduction injury to the metacarpophalangeal (MCP) joint of the thumb, whereas gamekeeper's thumb typically refers to a chronic condition which has developed as a result of repeated episodes of lower-grade hyperabduction over a period of time. Gamekeeper's thumb is more difficult to treat because the UCL has lengthened and become thinner as a result of repeated injury. It is moderately painful compared to similar injuries.
In addition to skiing, this injury (resulting from forced abduction or hyperextension of the proximal phalanx of the thumb) is seen in a wide variety of other athletic endeavors. The most common mechanism of injury appears to be when a person extends the arm in an attempt to block a fall. The stress resulting from falling onto an abducted thumb produces a valgus force on the MCP joint of the thumb, resulting in a sprain or tear of the UCL.
In a recent study, 49% of UCL disruptions of the thumb were caused by a fall onto an outstretched hand. Sports injuries accounted for most of the remaining injuries, with only 2.4% acquired as a result of skiing injuries.
Triphalangeal thumb can occur in syndromes but it can also be isolated. The triphalangeal thumb can appear in combination with other malformations or syndromes.
Syndromes include:
- Holt-Oram syndrome
- Aase syndrome
- Blackfan-Diamond syndrome
- Townes-Brocks syndrome
Malformations include:
- Radial polydactyly
- Syndactyly
- Claw-like hand or foot
This syndrome is predominantly found in young women, but also occurs in children, teenagers and octogenarians.
Radial dysplasia, also known as radial club hand or radial longitudinal deficiency, is a congenital difference occurring in a longitudinal direction resulting in radial deviation of the wrist and shortening of the forearm. It can occur in different ways, from a minor anomaly to complete absence of the radius, radial side of the carpal bones and thumb. Hypoplasia of the distal humerus may be present as well and can lead to stiffnes of the elbow. Radial deviation of the wrist is caused by lack of support to the carpus, radial deviation may be reinforced if forearm muscles are functioning poorly or have abnormal insertions. Although radial longitudinal deficiency is often bilateral, the extent of involvement is most often asymmetric.
The incidence is between 1:30,000 and 1:100,000 and it is more often a sporadic mutation rather than an inherited condition. In case of an inherited condition, several syndromes are known for an association with radial dysplasia, such as the cardiovascular Holt-Oram syndrome, the gastrointestinal VATER syndrome and the hematologic Fanconi anemia and TAR syndrome. Other possible causes are an injury to the apical ectodermal ridge during upper limb development, intrauterine compression, or maternal drug use (thalidomide).