Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Environmental influences may also cause, or interact with genetics to produce, orofacial clefting. An example of how environmental factors might be linked to genetics comes from research on mutations in the gene "PHF8" that cause cleft lip/palate (see above). It was found that PHF8 encodes for a histone lysine demethylase, and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a fact considered important with respect to reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy. In humans, fetal cleft lip and other congenital abnormalities have also been linked to maternal hypoxia, as caused by e.g. maternal smoking, maternal alcohol abuse or some forms of maternal hypertension treatment. Other environmental factors that have been studied include: seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids — which are members of the vitamin A family; anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).
Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Because the cause of facial clefts still is unclear, it is difficult to say what may prevent children being born with facial clefts. It seems that folic acid contributes to lowering the risk of a child being born with a facial cleft.
Cleft lip and palate occurs in about 1 to 2 per 1000 births in the developed world.
Rates for cleft lip with or without cleft palate and cleft palate alone varies within different ethnic groups.
The highest prevalence rates for (CL ± P) are reported for Native Americans and Asians. Africans have the lowest prevalence rates.
- Native Americans: 3.74/1000
- Japanese: 0.82/1000 to 3.36/1000
- Chinese: 1.45/1000 to 4.04/1000
- Caucasians: 1.43/1000 to 1.86/1000
- Latin Americans: 1.04/1000
- Africans: 0.18/1000 to 1.67/1000
Rate of occurrence of CPO is similar for Caucasians, Africans, North American natives, Japanese and Chinese. The trait is dominant.
It caused about 4,000 deaths globally in 2010 down from 8,400 in 1990.
Prevalence of "cleft uvula" has varied from .02% to 18.8% with the highest numbers found among Chippewa and Navajo and the lowest generally in Africans.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
OAFNS is a combination of FND and oculo-auriculo-vertebral spectrum (OAVS).
The diagnosis of OAVS is based on the following facial characteristics: microtia (underdeveloped external ear), preauricular tags, facial asymmetry, mandibular hypoplasia and epibulbar lipodermoids (benign tumor of the eye which consists of adipose and fibrous tissue).
There still remains discussion about the classification and the minimal amount of characteristics. When someone presents with FND and the characteristics of OAVS, the diagnosis OAFNS may be made.
As the incidence of OAFNS is unknown, there are probably a lot of children with mild phenotypes that aren’t being diagnosed as being OAFNS.
The cause of OAFNS is unknown, but there are some theories about the genesis. Autosomal recessive inheritance is suggested because of a case with two affected siblings and a case with consanguineous parents. However, another study shows that it is more plausible that OAFNS is sporadic.
It is known that maternal diabetes plays a role in developing malformations of craniofacial structures and in OAVS. Therefore, it is suggested as a cause of OAFNS. Folate deficiency is also suggested as possible mechanism.
Low-dose CT protocols should be considered in diagnosing children with OAFNS.
A facial cleft is an opening or gap in the face, or a malformation of a part of the face. Facial clefts is a collective term for all sorts of clefts. All structures like bone, soft tissue, skin etc. can be affected. Facial clefts are extremely rare congenital anomalies. There are many variations of a type of clefting and classifications are needed to describe and classify all types of clefting. Facial clefts hardly ever occur isolated; most of the time there is an overlap of adjacent facial clefts.
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
Biomechanical factors include fetal head constraint during pregnancy. It has been found by Jacob et al. that constraint inside the womb is associated with decreased expression of Indian Hedgehog protein and noggin. These last two are both important factors influencing bone development.
Velopharyngeal insufficiency (VPI) is a failure of the body's ability to temporarily close the communication between the nasal cavity and the mouth, because of an anatomic dysfunction of the soft palate or of the lateral or posterior wall of the pharynx.
The effect of such a dysfunction leads to functional problems with speech (hypernasality), eating (chewing and swallowing), and breathing. This gap can be treated surgically, although the choice of operational technique is still controversial.
The terms velopharyngeal "incompetence", "inadequacy" and "insufficiency" historically have often been used interchangeably, although they do not necessarily mean the same thing (sense distinctions can be made but sometimes are not). Velopharyngeal insufficiency includes any structural defect of the velum or pharyngeal walls at the level of the nasopharynx with insufficient tissue to accomplish closure, or there is some kind of mechanical interference with closure. It is important that the term insufficiency is used if it is an anatomical defect and not a neurological problem.
Velopharyngeal insufficiency (VPI) can be caused by a variety of disorders (structural, genetic, functional or acquired) and is very often associated with a cleft palate. Abnormal physiological separation of the oropharynx from the nasopharynx can lead to VPI and hypernasality.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
Risk factors for developing a cystocele are:
- an occupation involving or history of heavy lifting
- pregnancy and childbirth
- chronic lung disease/smoking
- family history of cystocele
- exercising incorrectly
- ethnicity (risk is greater for Hispanic and whites)
- hypoestrogenism
- pelvic floor trauma
- connective tissue disorders
- spina bifida
- hysterectomy
- cancer treatment of pelvic organs* childbirth; correlates to the number of births
- forceps delivery
- age
- chronically high intra-abdominal pressures
- chronic obstructive pulmonary disease
- constipation
- obesity
Connective tissue disorders predispose women to developing cystocele and other pelvic organ prolapse. The tensile strength of the vaginal wall decreases when the structure of the collagen fibers change and become weaker.
3C syndrome, also known as CCC dysplasia, Craniocerebellocardiac dysplasia or Ritscher–Schinzel syndrome, is a rare condition, whose symptoms include heart defects, cerebellar hypoplasia, and cranial dysmorphism. It was first described in the medical literature in 1987 by Ritscher and Schinzel, for whom the disorder is sometimes named.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
A persistent thyroglossal duct is a usually benign medical condition in which the thyroglossal duct, a structure usually only found during embryonic development, fails to atrophy. The duct persists as a midline structure forming an open connection between the back of the tongue and the thyroid gland.This opening can lead to fluid accumulation and infection, which necessitate the removal of the duct.
Prostheses are used for nonsurgical closure in a situation of velopharyngeal dysfunction. There are two types of prosthesis: the speech bulb and the palatal lift prosthesis. The speech bulb is an acrylic body that can be placed in the velopharyngeal port and can achieve obstruction. The palatal lift prosthesis is comparable with the speech bulb, but with a metal skeleton attached to the acrylic body. This will also obstruct the velopharyngeal port. It is a good option for patients that have enough tissue but a poor control of the coordination and timing of velopharyngeal movement. It is also used in patients with contraindications for surgery. It has also been used as a reversible test to confirm whether a surgical intervention would help.
In order to prevent further cysts and infections from forming, the thyroglossal duct and all of its branches are removed from the throat and neck area. A procedure, known as the Sistrunk procedure, is considered to be the standard procedure and involves removal of portions of the hyoid bone and core tissue of the suprahyoid region. Cysts will often reoccur if the entire duct is not removed, so reoccurrence requires a wider range of tissue to be removed in a subsequent surgery.
Delaying the surgical procedure almost always leads to recurrent infections, which will continue to delay the needed treatment. The Sistrunk procedure has a reoccurrence rate of less than 5%, proving it is extremely effective at removing the majority of traces of the persistent thyroglossal duct.
A cystocele occurs when the muscles, fascia, tendons and connective tissues between a woman’s bladder and vagina weaken, or detach. The type of cystocele that can develop can be due to to three vaginal wall attachment failures. The midline defect, the paravaginal defect, and the transverse defect. The midline defect is a cystocele is caused by the overstretching of the vaginal wall. The paravaginal defect is the separation of the vaginal connective tissue at the arcus tendineus fascia pelvis. The transverse defect is when the pubocervical fascia becomes detached from the top (apex) of the vagina. There is some pelvic prolapse in 40-60% of women who have given birth. Muscle injuries have been identified in women with cystocele. These injuries are more likely to occur in women who have given birth than those who have not. These muscular injuries result in less support to the anterior vaginal wall.
Some women with connective tissue disorders are predisposed to developing anterior vaginal wall collapse. Up to one third of women with Marfan syndrome have a history of vaginal wall collapse. Ehlers-Danlos syndrome in women is associated with a rate of 3 out of 4.
The incidence of the disease is higher in people from certain parts of the world including South-East Asia, South Africa and the Middle East.
The disorder may occur by itself or in association with other genetic disorders such as Down syndrome. About half of isolated cases are linked to a specific genetic mutation and about 20% occur within families. Some of these occur in an autosomal dominant manner. The cause of the remaining cases is unclear. If otherwise normal parents have one child with the condition, the next child has a 4% risk of being affected.
In one study, the number of new cases of cholesteatoma in Iowa was estimated in 1975–6 to be just under one new case per 10,000 citizens per year. Cholesteatoma affects all age groups, from infants through to the elderly. The peak incidence occurs in the second decade.
Parry–Romberg syndrome appears to occur randomly and for unknown reasons. Prevalence is higher in females than males, with a ratio of roughly 3:2. The condition is observed on the left side of the face about as often as on the right side.