Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
The cause of Goldenhar syndrome is largely unknown. However, it is thought to be multifactorial, although there may be a genetic component, which would account for certain familial patterns. It has been suggested that there is a branchial arch development issue late in the first trimester.
An increase in Goldenhar syndrome in the children of Gulf War veterans has been suggested, but the difference was shown to be statistically insignificant.
Prevalence ranges from 1 in 3500 to 5600 live births. Male-female ratio is found to be 3:2.
Feingold syndrome is caused by mutations in the neuroblastoma-derived V-myc avian myelocytomatosis viral-related oncogene (MYCN) which is located on the short arm of chromosome 2 (2p24.1).
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Feingold syndrome (also called oculodigitoesophagoduodenal syndrome) is a rare autosomal dominant hereditary disorder. It is named after Murray Feingold, an American physician who first described the syndrome in 1975. Until 2003, at least 79 patients have been reported worldwide.
The true prevalence of PMS has not been determined. More than 1200 people have been identified worldwide according the Phelan-McDermid Syndrome Foundation. However, it is believed to be underdiagnosed due to inadequate genetic testing and lack of specific clinical features. It is known to occur with equal frequency in males and females. Studies using chromosomal microarray for diagnosis indicate that at least 0.5% of cases of ASD can be explained by mutations or deletions in the "SHANK3" gene. In addition when ASD is associated with ID, "SHANK3" mutations or deletions have been found in up to 2% of individuals.
Recent findings in genetic research have suggested that a large number of genetic disorders, both genetic syndromes and genetic diseases, that were not previously identified in the medical literature as related, may be, in fact, highly related in the genetypical root cause of the widely varying, phenotypically-observed disorders. Thus, Alstrom syndrome is a ciliopathy. Other known ciliopathies include primary ciliary dyskinesia, Bardet-Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Meckel-Gruber syndrome and some forms of retinal degeneration.
A prognosis for Alström syndrome is complicated because it widely varies. Any person that has the syndrome have different set of disorders. Permanent blindness, deafness, and Type 2 diabetes may occur. Liver and kidney failure can progressively get worse. The life expectancy is usually reduced and the patients rarely live past 50 years old.
NBCCS has an incidence of 1 in 50,000 to 150,000 with higher incidence in Australia. One aspect of NBCCS is that basal-cell carcinomas will occur on areas of the body which are not generally exposed to sunlight, such as the palms and soles of the feet and lesions may develop at the base of palmar and plantar pits.
One of the prime features of NBCCS is development of multiple BCCs at an early age, often in the teen years. Each person who has this syndrome is affected to a different degree, some having many more characteristics of the condition than others.
Marfan syndrome affects males and females equally, and the mutation shows no ethnic or geographical bias. Estimates indicate about 1 in 5,000 to 10,000 individuals have Marfan syndrome.
Prior to modern cardiovascular surgical techniques and drugs such as losartan, and metoprolol, the prognosis of those with Marfan syndrome was not good: a range of untreatable cardiovascular issues was common. Lifespan was reduced by at least a third, and many died in their teens and twenties due to cardiovascular problems. Today, cardiovascular symptoms of Marfan syndrome are still the most significant issues in diagnosis and management of the disease, but adequate prophylactic monitoring and prophylactic therapy offers something approaching a normal lifespan, and more manifestations of the disease are being discovered as more patients live longer. Women with Marfan syndrome live longer than men.
The key problem is the early fusion of the skull, which can be corrected by a series of surgical procedures, often within the first three months after birth. Later surgeries are necessary to correct respiratory and facial deformities.
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Urofacial Syndrome occurs due to either disruption or mutation of a gene on chromosome 10q23q24. The gene is located on a 1 centimorgan interval between D10S1433 and D10S603. Alteration of this gene leads to alteration of facial and urinary developmental fields. This gene is believed to be the HPSE2 gene. The HPSE2 gene is expressed in both the central nervous system as well as the bladder. Heparanase 2 is protein coded by exons 8 and 9 on the HPSE2 gene. This protein is believed to be altered in the case of this syndrome. Studies performed on mice indicate that HPSE2 has no enzymatic activity.
Mutations in the HPSE2 gene on chromosome 10q23q24 have been observed to cause Ochoa Syndrome. This means the defective gene responsible for the disorder is located on an autosome (chromosome 10 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The relationship between a defective HPSE2 gene and Ochoa syndrome is unclear. There is postulation that the genetic changes may lead to an abnormality in the brain region, evidence for this postulation is that the areas of the brain that control facial expression and urination are in close proximity of each other. Other hypotheses think that the defective heparanase 2 protein may lead to problems with development of the urinary tract or with muscle function in the face and bladder.
Fraser syndrome (also known as Meyer-Schwickerath's syndrome, Fraser-François syndrome, or Ullrich-Feichtiger syndrome) is an autosomal recessive congenital disorder. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
A common cause for Weaver syndrome is mutations in the EZH2 gene on chromosome 7q36. EZH2 (Enhancer of Zeste, Drosophila, homolog 2), is the second histone methyltransferase associated with human overgrowth. It encodes the catalytic component of the PRC2 protein complex (Polycomb Repressive Complex 2), which regulates chromatin structure and gene expression, and has been found to repress transcription. EZH2 also has critical roles in stem cell maintenance and cell lineage determination, such as osteogenesis, myogenesis, lymphopoiesis and hematopoiesis.
It can also be associated with mutations in the histone methyltransferase NSD1 gene on chromosome 5q35. The functions of NSD1 are not clearly known, but it is thought to act as a factor in influencing transcription, which contains domains involved in chromatin-mediated regulation during development.
Most cases are found to be sporadic, with no family history of the syndrome, although there have been a few cases in families where autosomal dominant inheritance has been reported.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Perlman syndrome is a rare disease with an estimated incidence of less than 1 in 1,000,000. As of 2008, less than 30 patients had ever been reported in the world literature.
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
The minimal deletion causing this syndrome has been defined as a 3 megabase region that contains the genes GPR35, GPC1 and STK25.
Almost all deletions are found to be terminal deletions at the end of chromosome 2. There is a high frequency of "de novo" deletions, but multiple cases within a single family are also observed. Equal proportions of maternally and paternally derived rearrangements were seen in Aldred's series. No common breakpoints for the deletion were identified indicating that the 2q37 rearrangement is unlikely to be mediated by non-homologous recombination and low-copy repeats. In a study of 20 patients, no clear relationship was found between clinical features and the size or position of the monosomic region.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).