Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).
Saccharopinuria (an excess of saccharopine in the urine), also called saccharopinemia, saccharopine dehydrogenase deficiency or alpha-aminoadipic semialdehyde synthase deficiency, is a variant form of hyperlysinemia. It is caused by a partial deficiency of the enzyme saccharopine dehydrogenase, which plays a secondary role in the lysine metabolic pathway. Inheritance is thought to be autosomal recessive, but this cannot be established as individuals affected by saccharopinuria typically have only a 40% reduction in functional enzyme.
Carnosinemia, also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency, is a rare autosomal recessive metabolic disorder caused by a deficiency of "carnosinase", a dipeptidase (a type of enzyme that splits dipeptides into their two amino acid constituents).
Carnosine is a dipeptide composed of beta-alanine and histidine, and is found in skeletal muscle and cells of the nervous system. This disorder results in an excess of carnosine in the urine, cerebrospinal fluid (CSF), blood and nervous tissue. Neurological disorders associated with a deficiency of carnosinase, and the resulting carnosinemia ("carnosine in the blood") are common.
6-Pyruvoyltetrahydropterin synthase deficiency is an autosomal recessive disorder that causes malignant hyperphenylalaninemia due to tetrahydrobiopterin deficiency.
It belongs to the rare diseases. It is a recessive disorder that is accompanied by hyperphenylalaninemia. Commonly reported symptoms are initial truncal hypotonia, subsequent appendicular hypertonia, bradykinesia, cogwheel rigidity, generalized dystonia, and marked diurnal fluctuation. Other reported clinical features include difficulty in swallowing, oculogyric crises, somnolence, irritability, hyperthermia, and seizures. Chorea, athetosis, hypersalivation, rash with eczema, and sudden death have also been reported. Patients with mild phenotypes may deteriorate if given folate antagonists such as methotrexate, which can interfere with a salvage pathway through which dihydrobiopterin is converted into tetrahydrobiopterin via dihydrofolate reductase. Treatment options include substitution with neurotransmitter precursors (levodopa, 5-hydroxytryptophan), monoamine oxidase inhibitors, and tetrahydrobiopterin. Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
It is caused by the deficiency of the enzyme cystathionine beta synthase, and the deficiency of folic acid, vitamin B12 and pyridoxine (vitamin B6), or mutations of related enzymes.
No sexual predilection is observed because the deficiency of glycogen synthetase activity is inherited as an autosomal recessive trait.
A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction.
Management for mitochondrial trifunctional protein deficiency entails the following:
- Avoiding factors that might precipitate condition
- Glucose
- Low fat/high carbohydrate nutrition
N-Acetylglutamate synthase (or synthetase) deficiency is an autosomal recessive urea cycle disorder.
The major morbidity is a risk of fasting hypoglycemia, which can vary in severity and frequency. Major long-term concerns include growth delay, osteopenia, and neurologic damage resulting in developmental delay, intellectual deficits, and personality changes.
Copper deficiency is a very rare hematological and neurological disorder.
The neurodegenerative syndrome of copper deficiency has been recognized for some time in ruminant animals, in which it is commonly known as "swayback". Copper is ubiquitous, and daily requirement is low, making acquired copper deficiency very rare. Copper deficiency can manifest in parallel with vitamin B12 and other nutritional deficiencies.
The most common cause of copper deficiency is a remote gastrointestinal surgery, such as gastric bypass surgery, due to malabsorption of copper, or zinc toxicity. On the other hand, Menkes disease is a genetic disorder of copper deficiency involving a wide variety of symptoms that is often fatal.
Copper is involved in normalized function of many enzymes, such as cytochrome c oxidase, which is complex IV in mitochondrial electron transport chain, ceruloplasmin, Cu/Zn superoxide dismutase, and in amine oxidases. These enzyme catalyze reactions for oxidative phosphorylation, iron transportation, antioxidant and free radical scavenging and neutralization, and neurotransmitter synthesis, respectively. A regular diet contains a variable amount of copper, but may provide 5 mg/day, of which only 20-50% is absorbed. The diet of the elderly may contain a lower copper content than the recommended daily intake. Dietary copper can be found in whole grain cereals, legumes, oysters, organ meats (particularly liver), cherries, dark chocolate, fruits, leafy green vegetables, nuts, poultry, prunes, and soybeans products like tofu.
The deficiency in copper can cause many hematological manifestations, such as myelodysplasia, anemia, low white blood cell count, and low count of neutrophils(a type of white blood cell that is often called "the first line of defense" for the immune system). Copper deficiency has long been known for as a cause of myelodysplasia (when a blood profile has indicators of possible future leukemia development), but it was not until recently in 2001 that copper deficiency was associated with neurological manifestations. Neurological manifestations seen with copper deficiency may include sensory ataxia (irregular coordination due to proprioceptive loss), spasticity, muscle weakness, and more rarely visual loss due to damage in the peripheral nerves, myelopathy (disease of the spinal cord), and rarely optic neuropathy.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
Methylene tetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the "MTHFR" gene. Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine. Natural variation in this gene is common in healthy people. Although some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer's disease and other forms of dementia, colon cancer, and acute leukemia, findings from small early studies have not been reproduced. Some mutations in this gene are associated with methylenetetrahydrofolate reductase deficiency.
Increased consumption of zinc is another cause of copper deficiency. Zinc is often used for the prevention or treatment of common colds and sinusitis (inflammation of sinuses due to an infection), ulcers, sickle cell disease, celiac disease, memory impairment and acne. Zinc is found in many common vitamin supplements and is also found in denture creams. Recently, several cases of copper deficiency myeloneuropathy were found to be caused by prolonged use of denture creams containing high quantities of zinc.
Metallic zinc is the core of all United States currency coins, including copper coated pennies. People who ingest a large number of coins will have elevated zinc levels, leading to zinc-toxicity-induced copper deficiency and the associated neurological symptoms. This was the case for a 57-year-old woman diagnosed with schizophrenia. The woman consumed over 600 coins, and started to show neurological symptoms such as unsteady gait and mild ataxia.
Leukotriene C4 synthase deficiency is an inborn error of metabolism.
Deficiency of Leukotriene C4 synthase can lead to a reduction in Leukotriene C4.
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme (EC. 5. 4.99.2) that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.
The gene for carnosinase is located on chromosome 18, an autosome. The "carnosine dipeptidase-1" gene ("CNDP1") controls tissue and serum carnosinase. Mutations in "CNDP1" are responsible for carnosinase deficiency, resulting in carnosinemia.
Carnosinemia is an autosomal recessive disorder, which means the defective gene is located on an autosome, and two copies of the defective gene - one from each parent - are required to inherit the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Mannosidosis is a deficiency in mannosidase, an enzyme.
There are two types:
- Alpha-mannosidosis
- Beta-mannosidosis
Although there is currently no cure, treatment includes injections of structurally similar compound, N-Carbamoyl-L-glutamate, an analogue of N-Acetyl Glutamate. This analogue likewise activates CPS1. This treatment mitigates the intensity of the disorder.
If symptoms are detected early enough and the patient is injected with this compound, levels of severe mental retardation can be slightly lessened, but brain damage is irreversible.
Early symptoms include lethargy, vomiting, and deep coma.
A deficiency of vitamin B alone is relatively uncommon and often occurs in association with other vitamins of the B complex. The elderly and alcoholics have an increased risk of vitamin B deficiency, as well as other micronutrient deficiencies. Evidence exists for decreased levels of vitamin B in women with type 1 diabetes and in patients with systemic inflammation, liver disease, rheumatoid arthritis, and those infected with HIV. Use of oral contraceptives and treatment with certain anticonvulsants, isoniazid, cycloserine, penicillamine, and hydrocortisone negatively impact vitamin B status. Hemodialysis reduces vitamin B plasma levels.
The presentation of mitochondrial trifunctional protein deficiency may begin during infancy, features that occur are: low blood sugar, weak muscle tone, and liver problems. Infants with this disorder are at risk for heart problems, breathing difficulties, and pigmentary retinopathy. Signs and symptoms of mitochondrial trifunctional protein deficiency that may begin "after" infancy include hypotonia, muscle pain, a breakdown of muscle tissue, and a loss of sensation in the extremities called peripheral neuropathy. Some who have MTP deficiency show a progressive course associated with myopathy, and recurrent rhabdomyolysis.