Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The number of workers in the United States exposed to beryllium vary but has been estimated to be as high as 800,000 during the 1960s and 1970s. A more recent study estimated the number of exposed workers in the United States from in 1996 to be around 134,000.
The rate of workers becoming sensitized to beryllium varies based on genetics and exposure levels. In one study researchers found the prevalence of beryllium sensitization to range from 9 - 19% depending on the industry. Many workers who are found to be sensitive to beryllium also meet the diagnostic criteria for CBD. In one study of nuclear workers, among those who were sensitized to beryllium, 66% were found to have CBD as well. The rate of progression from beryllium sensitization to CBD has been estimated to be approximately 6-8% per year. Stopping exposure to beryllium in those sensitized has not been definitively shown to stop the progression to CBD.
The overall prevalence of CBD among workers exposed to beryllium has ranged from 1 – 5% depending on industry and time period of study.
The general population is unlikely to develop acute or chronic beryllium disease because ambient air levels of beryllium are normally very low (<0.03 ng/m). However, a study found 1% of people living within 3/4 of a mile of a beryllium plant in Lorain, Ohio, had berylliosis after exposure to concentrations estimated to be less than 1 milligram per cubic metre of air. In the United States the Beryllium Case Registry contained 900 records, early cases relating to extraction and fluorescent lamp manufacture, later ones coming from the aerospace, ceramics and metallurgical industries.
Typical levels of beryllium that industries may release into the air are of the order of , averaged over a 30-day period, or of workroom air for an 8-hour work shift. Compliance with the current U.S. Occupational Safety and Health Administration (OSHA) permissible exposure limit for beryllium of has been determined to be inadequate to protect workers from developing beryllium sensitization and CBD. The American Conference of Governmental Industrial Hygienists (ACGIH), which is an independent organization of experts in the field of occupational health, has proposed a threshold limit value (TLV) of in a 2006 Notice of Intended Change (NIC). This TLV is 40 times lower than the current OSHA permissible exposure limit, reflecting the ACGIH analysis of best available peer-reviewed research data concerning how little airborne beryllium is required to cause sensitization and CBD.
Because it can be difficult to control industrial exposures to beryllium, it is advisable to use any methods possible to reduce airborne and surface contamination by beryllium, to minimize the use of beryllium and beryllium-containing alloys whenever possible, and to educate people about the potential hazards if they are likely to encounter beryllium dust or fumes. It is important to damp wipe meallographic preparation equipment to prevent accumulation of dry particles. Sectioning, grinding, and polishing must be performed under sufficiently vented hoods equipped with special filters.
On 29 January 2009, the Los Alamos National Laboratory announced it was notifying nearly 2,000 current and former employees and visitors that they may have been exposed to beryllium in the lab and may be at risk of disease. Concern over possible exposure to the material was first raised in November 2008, when a box containing beryllium was received at the laboratory's short-term storage facility.
The signs and symptoms of acute beryllium pneumonitis usually resolve over several weeks to months, but may be fatal in 10 percent of cases, and about 15–20% of cases may progress to CBD.
Acute beryllium poisoning approximately doubles the risk of getting lung cancer. The mechanism by which beryllium is carcinogenic is unclear, but may be due to ionic beryllium binding to nucleic acids; it is not mutagenic.
Acute beryllium poisoning is an occupational disease. Relevant occupations are those where beryllium is mined, processed or converted into metal alloys, or where machining of metals containing beryllium or recycling of scrap alloys occurs.
Beryllium is regarded extraordinarily hazardous to health upon enough amounts of dust, mists, or fumes consisting fragments little enough to inhale (typically 10µm or less). Metallographic preparation equipment and laboratory work surfaces must be damp wiped occasionally to inhibit buildup of particles. Cutting, grinding, and polishing procedures which manufacture dusts or fumes must be handled within sufficiently vented coverings supplied with particular filters.
Pneumoconiosis is an occupational lung disease and a restrictive lung disease caused by the inhalation of dust, often in mines and from agriculture.
In 2013, it resulted in 260,000 deaths, up from 251,000 deaths in 1990. Of these deaths, 46,000 were due to silicosis, 24,000 due to asbestosis and 25,000 due to coal workers pneumoconiosis.
In 2013 pneumoconiosis resulted in 260,000 deaths up from 251,000 deaths in 1990. Of these deaths 46,000 were due to silicosis, 24,000 due to asbestosis and 25,000 due to coal workers pneumoconiosis.
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
Pharmaceutical injuries can occur when a person is injured by a dangerous, defective or contaminated medication. Many pharmaceutical toxic injury cases are mass tort cases, as most medications are consumed by thousands of people. The cases are often litigated against drug manufacturers and distributors, and potentially against prescribing physicians. When prosecuted against drug manufacturers and distributors, pharmaceutical toxic tort cases differ from medical malpractice suits in that pharmaceutical toxic tort cases are essentially product liability cases, the defective product being the drug.
The home has recently become the subject of toxic tort litigation, due to exposure to mold contamination, construction materials such as wood or carpeting treated with formaldehyde, and pesticides, and lead paint. Some imported consumer items, such as toys and ceramics, may be produced with dangerously high levels of lead.
Progressive Massive Fibrosis (PMF), characterized by the development of large conglomerate masses of dense fibrosis (usually in the upper lung zones), can complicate silicosis and coal worker's pneumoconiosis. Conglomerate masses may also occur in other pneumoconioses, such as talcosis, berylliosis (CBD), kaolin pneumoconiosis, and pneumoconiosis from carbon compounds, such as carbon black, graphite, and oil shale. Conglomerate masses can also develop in sarcoidosis, but usually near the hilae and with surrounding paracitricial emphysema.
The disease arises firstly through the deposition of silica or coal dust (or other dust) within the lung, and then through the body's immunological reactions to the dust.
The pathogenesis of PMF is complicated, but involves two main routes - an immunological route, and a mechanical route.
Immunologically, disease is caused primarily through the activity of lung macrophages, which phagocytose dust particles after their deposition. These macrophages seek to eliminate the dust particle through either the mucociliary mechanism, or through lymphatic vessels which drain the lungs. Macrophages also produce an inflammatory mediator known as interleukin-1 (IL-1), which is part of the immune systems first line defenses against infecting particles. IL-1 is responsible for 'activation' of local vasculature, causing endothelial cells to express certain cell adhesion molecules, which help the cells of the bodies immune system to migrate into tissues. Macrophages exposed to dust have been shown to have markedly decreased chemotaxis. Production of inflammatory mediators - and the tissue damage that ensues as an effect of this, as well as reduced motility of cells, is fundamental to the pathogenesis of pneumoconiosis and the accompanying inflammation, fibrosis, and emphysema.
There are also some mechanical factors involved in the pathogenesis of Complex Pneumoconiosis that should be considered. The most notable indications are the fact that the disease tends to develop in the upper lobe of the lung - especially on the right, and its common occurrence in taller individuals.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Beryllium poisoning is poisoning by the toxic effects of beryllium, or more usually its compounds. It takes two forms:
- Acute beryllium poisoning, usually as a result of exposure to soluble beryllium salts
- Chronic beryllium disease (CBD) or berylliosis, usually as a result of long-term exposure to beryllium oxide usually caused by inhalation.
The following are causes of BHL:
- Sarcoidosis
- Infection
- Tuberculosis
- Fungal infection
- Mycoplasma
- Intestinal Lipodystrophy (Whipple's disease)
- Malignancy
- Lymphoma
- Carcinoma
- Mediastinal tumors
- Inorganic dust disease
- Silicosis
- Berylliosis
- Extrinsic allergic alveolitis
- Such as bird fancier's lung
- Less common causes also exist:
- Eosinophilic granulomatosis with polyangiitis
- Human immunodeficiency virus
- Extrinsic allergic alveolitis
- Adult-onset Still's disease
Bilateral hilar lymphadenopathy is a bilateral enlargement of the lymph nodes of pulmonary hila. It is a radiographic term that describes the enlargement of mediastinal lymph nodes and is most commonly identified by a chest x-ray.
"Listeria monocytogenes" infection in infants can cause potentially fatal disseminated granulomas, called granulomatosis infantiseptica, following "in utero" infection.
Pneumocystis infection in the lungs is usually not associated with granulomas, but rare cases are well documented to cause granulomatous inflammation. The diagnosis is established by finding Pneumocystis yeasts within the granulomas on lung biopsies.