Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The mortality rate ranges from 3–7% in a mean follow up period of 8.5 to 9.7 years. Death is often related to accidents.
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
Benign familial infantile epilepsy (BFIE), also known as benign familial infantile seizures (BFIS) or benign familial infantile convulsions (BFIC) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
A family history of epilepsy in infancy distinguishes this syndrome from the non-familial classification (see benign infantile epilepsy), though the latter may be simply sporadic cases of the same genetic mutations. The condition is inherited with an autosomal dominant transmission. There are several genes responsible for this syndrome, on chromosomes 2, 16 and 19. It is generally described as idiopathic, meaning that no other neurological condition is associated with it or causes it. However, there are some forms that are linked to neurological conditions. One variant known as infantile convulsions and choreoathetosis (ICCA) forms an association between BFIE and paroxysmal kinesigenic choreoathetosis and has been linked to the PRRT2 gene on chromosome 16. An association with some forms of familial hemiplegic migraine (FHM) has also been found. Benign familial infantile epilepsy is not genetically related to benign familial neonatal epilepsy (BFNE), which occurs in neonates. However, a variation with seizure onset between two days and seven months called "benign familial neonatal–infantile seizures" (BFNIS) has been described, which is due to a mutation in the SCN2A gene.
Panayiotopoulos syndrome probably affects 13% of children aged 3 to 6 years who have had 1 or more afebrile seizures and 6% of such children in the 1- to 15-year age group. All races and both sexes are affected.
Panayiotopoulos syndrome is remarkably benign in terms of its evolution. The risk of developing epilepsy in adult life is probably no more than of the general population. Most patients have one or 2-5 seizures. Only a third of patients may have more than 5 seizures, and these may be frequent, but outcome is again favorable. However, one fifth of patients may develop other types of infrequent, usually rolandic seizures during childhood and early teens. These are also age-related and remit before the age of 16 years. Atypical evolutions with absences and drop attacks are exceptional. Children with pre-existing neurobehavioral disorders tend to be pharmacoresistant and have frequent seizures though these also remit with age.
Formal neuropsychological assessment of children with Panayiotopoulos syndrome showed that these children have normal IQ and they are not on any significant risk of developing cognitive and behavioural aberrations, which when they occur they are usually mild and reversible. Prognosis of cognitive function is good even for patients with atypical evolutions.
However, though Panayiotopoulos syndrome is benign in terms of its evolution, autonomic seizures are potentially life-threatening in the rare context of cardiorespiratory arrest.
The age of onset ranges from 1 to 14 years with 75% starting between 7–10 years. There is a 1.5 male predominance, prevalence is around 15% in children aged 1–15 years with non-febrile seizures and incidence is 10–20/100,000 of children aged 0–15 years
LGS is seen in approximately 4% of children with epilepsy, and is more common in males than in females. Usual onset is between the ages of three and five. Children can have no neurological problems prior diagnosis, or have other forms of epilepsy. West syndrome is diagnosed in 20% of patients before it evolves into LGS at about 2 years old.
Benign neonatal seizures include two disorders benign idiopathic neonatal seizures and benign familial neonatal seizures. They are not classified as epilepsy. Anticonvulsants are not needed. And those affected do not develop epilepsy when they grow up.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
PME accounts for less than 1% of epilepsy cases at specialist centres. The incidence and prevalence of PME is unknown, but there are considerable geography and ethnic variations amongst the specific genetic disorders. One cause, Unverricht Lundborg Disease, has an incidence of at least 1:20,000 in Finland.
West syndrome is a triad of developmental delay, seizures termed infantile spasms, and EEG demonstrating a pattern termed hypsarrhythmia. Onset occurs between three months and two years, with peak onset between eight and 9 months. West syndrome may arise from idiopathic, symptomatic, or cryptogenic causes. The most common cause is tuberous sclerosis. The prognosis varies with the underlying cause. In general, most surviving patients remain with significant cognitive impairment and continuing seizures and may evolve to another eponymic syndrome, Lennox-Gastaut syndrome. It can be classified as idiopathic, syndromic, or cryptogenic depending on cause and can arise from both focal or generalized epileptic lesions.
Incidence is around 1:3200 to 1:3500 of live births. Statistically, boys are more likely to be affected than girls at a ratio of around 1.3:1. In 9 out of every 10 children affected, the spasms appear for the first time between the third and the twelfth month of age. In rarer cases, spasms may occur in the first two months or during the second to fourth year of age.
Cases of epilepsy may be organized into epilepsy syndromes by the specific features that are present. These features include the age at which seizures begin, the seizure types, and EEG findings, among others. Identifying an epilepsy syndrome is useful as it helps determine the underlying causes as well as what anti-seizure medication should be tried.
The ability to categorize a case of epilepsy into a specific syndrome occurs more often with children since the onset of seizures is commonly early. Less serious examples are benign rolandic epilepsy (2.8 per 100,000), childhood absence epilepsy (0.8 per 100,000) and juvenile myoclonic epilepsy (0.7 per 100,000). Severe syndromes with diffuse brain dysfunction caused, at least partly, by some aspect of epilepsy, are also referred to as epileptic encephalopathies. These are associated with frequent seizures that are resistant to treatment and severe cognitive dysfunction, for instance Lennox-Gastaut syndrome and West syndrome.
Epilepsies with onset in childhood are a complex group of diseases with a variety of causes and characteristics. Some people have no obvious underlying neurological problems or metabolic disturbances. They may be associated with variable degrees of intellectual disability, elements of autism, other mental disorders, and motor difficulties. Others have underlying inherited metabolic diseases, chromosomal abnormalities, specific eye, skin and nervous system features, or malformations of cortical development. Some of these epilepsies can be categorized into the traditional epilepsy syndromes. Furthermore, a variety of clinical syndromes exist of which the main feature is not epilepsy but which are associated with a higher risk of epilepsy. For instance between 1 and 10% of those with Down syndrome and 90% of those with Angelman syndrome have epilepsy.
In general, genetics is believed to play an important role in epilepsies by a number of mechanisms. Simple and complex modes of inheritance have been identified for some of them. However, extensive screening has failed to identify many single rare gene variants of large effect. In the epileptic encephalopathies, de novo mutagenesis appear to be an important mechanism. De novo means that a child is affected, but the parents do not have the mutation. De novo mutations occur in eggs and sperms or at a very early stage of embryonic development. In Dravet syndrome a single affected gene was identified.
Syndromes in which causes are not clearly identified are difficult to match with categories of the current classification of epilepsy. Categorization for these cases is made somewhat arbitrarily. The "idiopathic" (unknown cause) category of the 2011 classification includes syndromes in which the general clinical features and/or age specificity strongly point to a presumed genetic cause. Some childhood epilepsy syndromes are included in the unknown cause category in which the cause is presumed genetic, for instance benign rolandic epilepsy. Others are included in "symptomatic" despite a presumed genetic cause (in at least in some cases), for instance Lennox-Gastaut syndrome. Clinical syndromes in which epilepsy is not the main feature (e.g. Angelman syndrome) were categorized "symptomatic" but it was argued to include these within the category "idiopathic". Classification of epilepsies and particularly of epilepsy syndromes will change with advances in research.
Generalized epilepsy, also known as primary generalized epilepsy or idiopathic epilepsy, is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain (which can be seen, for example, on electroencephalography, EEG).
Generalized epilepsy is "primary" because the epilepsy is the originally diagnosed condition itself, as opposed to "secondary" epilepsy, which occurs as a symptom of a diagnosed condition.
No single cause of OS has been identified. In most cases, there is severe atrophy of both hemispheres of the brain. Less often, the root of the disorder is an underlying metabolic syndrome. Although it was initially published that no genetic connection had been established, several genes have since associated with Ohtahara syndrome. It can be associated with mutations in "ARX", "CDKL5", "SLC25A22", "STXBP1", "SPTAN1", "KCNQ2", "ARHGEF9", "PCDH19", "PNKP", "SCN2A", "PLCB1", "SCN8A", and likely others.
Treatment outlook is poor. Anticonvulsant drugs and glucocorticoid steroids may be used to try to control the seizures, but their effectiveness is limited. Most therapies are related to symptoms and day-to-day living.
Most generalized epilepsy starts during childhood. While some patients outgrow their epilepsy during adolescence and no longer need medication, in others, the condition remains for life, thereby requiring lifelong medication and monitoring.
Migraine itself is a very common disorder, occurring in 15–20% of the population. Hemiplegic migraine, be it familial or spontaneous, is less prevalent, 0.01% prevalence according to one report. Women are three times more likely to be affected than males.
Early myoclonic encephalopathy (EME) is an epilepsy syndrome where myoclonic seizures develop in the neonatal period. After several months, the seizure pattern may develop to infantile spasms (West syndrome). Various genetic and metabolic disorders are responsible. The seizures are resistant to treatment. The neurology is very abnormal and patients often do not live beyond one year.
Ohtahara syndrome (OS), also known as early infantile epileptic encephalopathy with burst-suppression (EIEE), is a progressive epileptic encephalopathy. The syndrome is outwardly characterized by tonic spasms and partial seizures, and receives its more elaborate name from the pattern of burst activity on an electroencephalogram (EEG). It is an extremely debilitating progressive neurological disorder, involving intractable seizures and severe mental retardation. No single cause has been identified, although in many cases structural brain damage is present.
Benign familial neonatal seizures (BFNS), formerly called benign familial neonatal convulsions (BFNC), is a rare autosomal dominant inherited form of seizures. It manifests in newborns, normally within the first 7 days of life, as tonic-clonic seizures. Infants are otherwise normal between attacks and develop without incident. Attacks normally spontaneously cease within the first 15 weeks of life. Lifetime susceptibility to seizures is increased, as 16% of those diagnosed with BFNE earlier in life will go on to have seizures versus a 2% lifetime risk for the general population. There are three known genetic causes of BFNE, two being the voltage-gated potassium channels KCNQ2 (BFNC1) and KCNQ3 (BFNC2) and the third being a chromosomal inversion (BFNC3). There is no obvious correlation between most of the known mutations and clinical variability seen in BFNE.
This is an autosomal recessive disorder in which the body is deficient in α-neuraminidase.
The cause of benign paroxysmal torticollis in infants is thought to be migrainous. More than 50% of infants have a family history of migraine in first degree relatives. The cause is likely to be genetic.
The mechanism of action of benign paroxysmal torticollis is not yet understood. It has been suggested that unilateral vestibular dysfunction or vascular disturbance in the brain stem may be responsible for the condition.
Neonatal seizures are often controlled with phenobarbital administration. Recurrent seizures later in life are treated in the standard ways (covered in the main epilepsy article). Depending on the severity, some infants are sent home with heart and oxygen monitors that are hooked to the child with stick on electrodes to signal any seizure activity. Once a month the monitor readings are downloaded into a central location for the doctor to be able to read at a future date. This monitor is only kept as a safeguard as usually the medication wards off any seizures. Once the child is weaned off the phenobarbital, the monitor is no longer necessary.
"See the equivalent section in the main migraine article."
People with FHM are encouraged to avoid activities that may trigger their attacks. Minor head trauma is a common attack precipitant, so FHM sufferers should avoid contact sports. Acetazolamide or standard drugs are often used to treat attacks, though those leading to vasoconstriction should be avoided due to the risk of stroke.