Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis for those suffering from diagnosed benign fasciculation syndrome is generally regarded as being good to excellent. The syndrome causes no known long-term physical damage. Patients may suffer elevated anxiety even after being diagnosed with the benign condition. Such patients are often directed towards professionals who can assist with reductions and understanding of stress/anxiety, or those who can prescribe medication to help keep anxiety under control.
Spontaneous remission has been known to occur, and in cases where anxiety is thought to be a major contributor, symptoms are typically lessened after the underlying anxiety is treated. In a 1993 study by Mayo Clinic, 121 individuals diagnosed with benign fasciculation syndrome were assessed 2–32 years (~7 years average) after diagnosis. Of those patients there were no cases of BFS progressing to a more serious illness, and 50% of the patients reported significant improvement in their symptoms at the time of the follow-up. Only 4% of the patients reported symptoms being worse than those present at the time of their diagnosis.
The precise cause of BFS is unknown, and it is not known if it is a disease of the motor nerves, the muscles, or the neuromuscular junction.
Though twitching is sometimes a symptom of serious diseases such as spinal injury, muscular dystrophy, Lyme disease, Creutzfeldt–Jakob disease (CJD), neurofibromatosis or amyotrophic lateral sclerosis (ALS), causes like over-exertion are more common. Mitsikostas "et al." found that fasciculations "were slightly correlated to the body weight and height and to the anxiety level" in normal subjects.
BFS can also be attributed to long term use of anticholinergics such as diphenhydramine and opiates such as morphine, but the latter case is usually when withdrawal symptoms are present.
Magnesium deficiency can cause both fasciculations and anxiety. A vitamin D deficiency may also cause fasciculations, stemming from reduced ionized calcium in the blood (hypocalcemia).
Recent studies have found an association between widespread fasciculations and/or paresthesias with small fiber neuropathy in up to 82% of cases which have a normal EMG and nerve conduction study.
Risk factors for benign fasciculations may include the use of anticholinergic drugs over long periods. In particular, these include ethanolamines such as diphenhydramine (brand names Benadryl, Dimedrol, Daedalon and Nytol), used as an antihistamine and sedative, and dimenhydrinate (brand names Dramamine, Driminate, Gravol, Gravamin, Vomex, and Vertirosan) for nausea and motion sickness. Persons with benign fasciculation syndrome (BFS) may experience paraesthesia (especially numbness) shortly after taking such medication; fasciculation episodes begin as the medication wears off.
Stimulants can cause fasciculations directly. These include caffeine, pseudoephedrine (Sudafed), amphetamines, and the asthma bronchodilators salbutamol (brand names Proventil, Combivent, Ventolin). Medications used to treat attention deficit disorder (ADHD) often contain stimulants as well, and are common causes of benign fasciculations. Since asthma and ADHD are much more serious than the fasciculations themselves, this side effect may have to be tolerated by the patient after consulting a physician or pharmacist.
The depolarizing neuromuscular blocker succinylcholine causes fasciculations. It is a normal side effect of the drug's administration, and can be prevented with a small dose of a nondepolarizing neuromuscular blocker prior to the administration of succinylcholine, often 10% of a nondepolarizing NMB's induction dose.
Even if a drug such as caffeine causes fasciculations, that does not necessarily mean it is the only cause. For example, a very slight magnesium deficiency by itself (see below) might not be enough for fasciculations to occur, but when combined with caffeine, the two factors together could be enough.
Inadequate magnesium intake can cause fasciculations, especially after a magnesium loss due to severe diarrhea. Over-exertion and heavy alcohol consumption are also risk factors for magnesium loss. As 70–80% of the adult population does not consume the recommended daily amount of magnesium, inadequate intake may also be a common cause. Treatment consists of increased intake of magnesium from dietary sources such as nuts (especially almonds), bananas, and spinach. Magnesium supplements or pharmaceutical magnesium preparations may also be taken. However, too much magnesium may cause diarrhea, resulting in dehydration and nutrient loss (including magnesium itself, leading to a net loss, rather than a gain). It is well known as a laxative (Milk of Magnesia), though chelated magnesium can largely reduce this effect. Cheaper methods of the chelation process may be unsatisfactory for some people (e.g. mild diarrhea). Magnesium supplements recommend that they be taken only with meals, and not on an empty stomach.
Fasciculation also often occurs during a rest period after sustained stress, such as that brought on by unconsciously tense muscles. Reducing stress and anxiety is therefore another useful treatment.
There is no proven treatment for fasciculations in people with ALS. Among patients with ALS, fasciculation frequency is not associated with the duration of ALS and is independent of the degree of limb weakness and limb atrophy. No prediction of ALS disease duration can be made based on fasciculation frequency alone.
The long-term prognosis is uncertain, and has mostly to do with the underlying cause; i.e. autoimmune, paraneoplastic, etc. However, in recent years increased understanding of the basic mechanisms of NMT and autoimmunity has led to the development of novel treatment strategies. NMT disorders are now amenable to treatment and their prognoses are good. Many patients respond well to treatment, which usually provide significant relief of symptoms. Some cases of spontaneous remission have been noted, including Isaac's original two patients when followed up 14 years later.
While NMT symptoms may fluctuate, they generally don't deteriorate into anything more serious, and with the correct treatment the symptoms are manageable.
A very small proportion of cases with NMT may develop central nervous system findings in their clinical course, causing a disorder called Morvan's syndrome, and they may also have antibodies against potassium channels in their serum samples. Sleep disorder is only one of a variety of clinical conditions observed in Morvan's syndrome cases ranging from confusion and memory loss to hallucinations and delusions. However, this is a separate disorder.
Some studies have linked NMT with certain types of cancers, mostly lung and thymus, suggesting that NMT may be paraneoplastic in some cases. In these cases, the underlying cancer will determine prognosis. However, most examples of NMT are autoimmune and not associated with cancer.
The three causes of NMT are:
1. Acquired
2. Paraneoplastic
3. Hereditary
The acquired form is the most common, accounting for up to 80 percent of all cases and is suspected to be autoimmune-mediated, which is usually caused by antibodies against the neuromuscular junction.
The exact cause is unknown. However, autoreactive antibodies can be detected in a variety of peripheral (e.g. myasthenia gravis, Lambert-Eaton myasthenic syndrome) and central nervous system (e.g. paraneoplastic cerebellar degeneration, paraneoplastic limbic encephalitis) disorders. Their causative role has been established in some of these diseases but not all. Neuromyotonia is considered to be one of these with accumulating evidence for autoimmune origin over the last few years. Autoimmune neuromyotonia is typically caused by antibodies that bind to potassium channels on the motor nerve resulting in continuous/hyper-excitability. Onset is typically seen between the ages of 15–60, with most experiencing symptoms before the age of 40. Some neuromyotonia cases do not only improve after plasma exchange but they may also have antibodies in their serum samples against voltage-gated potassium channels. Moreover, these antibodies have been demonstrated to reduce potassium channel function in neuronal cell lines.
Treatment is similar to treatment for benign fasciculation syndrome.
Carbamazepine therapy has been found to provide moderate reductions in symptoms.
Cramp fasciculation syndrome (CFS) is a rare peripheral nerve hyperexcitability disorder. It is more severe than the related (and common) disorder known as benign fasciculation syndrome; it causes fasciculations, cramps, pain, fatigue, and muscle stiffness similar to those seen in neuromyotonia (another related condition). Patients with CFS, like those with neuromyotonia, may also experience paresthesias.
Most cases of cramp fasciculation syndrome are idiopathic.
Cramp fasciculation syndrome is diagnosed by clinical examination and electromyography (EMG). Fasciculation is the only abnormality (if any) seen with EMG.
Cramp fasciculation syndrome is a chronic condition. Treatment options include anti-seizure medications such as carbamazepine, immunosuppressive drugs and plasmapheresis.
The main symptoms involve involuntary blinking and chin thrusting. Some patients may experience excessive tongue protrusion, squinting, light sensitivity, muddled speech, or uncontrollable contraction of the platysma muscle. Some Meige's patients also have "laryngeal dystonia" (spasms of the larynx). Blepharospasm may lead to embarrassment in social situations, and oromandibular dystonia can affect speech, making it difficult to carry on the simplest conversations. This can cause difficulty in both personal and professional contexts, and in some cases may cause patients to withdraw from social situations.
The condition tends to affect women more frequently than men.
In some cases Meige's syndrome can be reversed when it is caused by medication. It has been theorized that it is related to cranio-mandibular orthopedic misalignment, a condition that has been shown to cause a number of other movement disorders (Parkinon's, tourettes, and torticollis). This theory is supported by the fact that the trigeminal nerve is sensory for blink reflex, and becomes hypertonic with craniomandibular dysfunction. Palliative treatments are available, such as botulinum toxin injections.
The effects of myoclonus in an individual can vary depending on the form and the overall health of the individual. In severe cases, particularly those indicating an underlying disorder in the brain or nerves, movement can be extremely distorted and limit ability to normally function, such as in eating, talking, and walking. In these cases, treatment that is usually effective, such as clonazepam and sodium valproate, may instead cause adverse reaction to the drug, including increased tolerance and a greater need for increase in dosage. However, the prognosis for more simple forms of myoclonus in otherwise healthy individuals may be neutral, as the disease may cause few to no difficulties. Other times the disease starts simply, in one region of the body, and then spreads.
The cause of PBP is unknown. One form of PBP is found to occur within patients that have a CuZn-superoxide dismutase (SOD1) mutation. Progressive bulbar palsy patients that have this mutation are classified with FALS patients, Familial ALS (FALS) accounts for about 5%-10% of all ALS cases and is caused by genetic factors. Within these, about 20-25% are linked to the SOD1 mutation. It is not currently known if and how the decreased SOD1 activity contributes to Progressive Bulbar Palsy or FALS, and studies are being done in patients and transgenic mice to help further understand the impact of this gene on the disease.
A case study was done on a 42-year-old woman who complained of muscle weakness 10 months prior to admission in the hospital. Upon neurological examination, the patient showed muscle atrophy, fasciculation in all limbs and decreased deep tendon reflexes. The patient’s older brother, father, and paternal uncle had previously all died of ALS or an ALS type syndrome. The patient developed Progressive Bulbar Palsy, became dependent on a respirator, and had two episodes of cardiac arrest. The patient died from pneumonia two years after the onset of the disease. After studying the patient, it was found that the patient had a two base pair deletion in the 126th codon in exon 5 of the SOD1 gene. This mutation produced a frameshift mutation, which led to a stop codon at position 131. SOD1 activity was decreased by about 30%. The patient’s histological examination showed severe reduction in lower motor neurons. Upon further study, this case proved to be important because it demonstrated that SOD1 mutations might not effect steady neuropathological changes, and that environmental and genetic factors might affect the phenotype of the SOD1 mutations.
Progressive Bulbar Palsy is slow in onset, with symptoms starting in most patients around 50–70 years of age. PBP has a life expectancy typically between 6 months and 3 years from onset of first symptoms. It is subtype of the Motor Neurone Diseases (MND) accounting for around 1 in 4 cases. Amyotrophic lateral sclerosis (ALS) is another sub-type. Pure PBP without any EMG or clinical evidence of abnormalities in the legs or arms is possible, albeit extremely rare. Moreover, about twenty-five percent of patients with PBP eventually develop the widespread symptoms common to ALS.
Research on myoclonus is supported through the National Institute of Neurological Disorders and Stroke (NINDS). The primary focus of research is on the role of neurotransmitters and receptors involved in the disease. Identifying whether or not abnormalities in these pathways cause myoclonus may help in efforts to develop drug treatments and diagnostic tests. Determining the extent that genetics play in these abnormalities may lead to potential treatments for their reversal, potentially correcting the loss of inhibition while enhancing mechanisms in the body that would compensate for their effects.
Infantile convulsions and choreoathetosis (ICCA) syndrome is a neurological genetic disorder with an autosomal dominant mode of inheritance. It is characterized by the association of benign familial infantile epilepsy (BIFE) at age 3–12 months and later in life with paroxysmal kinesigenic choreoathetosis. The ICCA syndrome was first reported in 1997 in four French families from north-western France and provided the first genetic evidence for common mechanisms shared by benign infantile seizures and paroxysmal dyskinesia. The epileptic origin of PKC has long been a matter of debates and PD have been classified as reflex epilepsies.Indeed, attacks of PKC and epileptic seizures have several characteristics in common, they both are paroxysmal in presentation with a tendency to spontaneous remission, and a subset of PKC responds well to anticonvulsants. This genetic disease has been mapped to chromosome 16p-q12. More than 30 families with the clinical characteristics of ICCA syndrome have been described worldwide so far.
In affected individuals presenting with the ICCA syndrome, the human genome was screened with microsatellite markers regularly spaced, and strong evidence of linkage with the disease was obtained in the pericentromeric region of chromosome 16, with a maximum lod score, for D16S3133 of 6.76 at a recombination fraction of 0. The disease gene has been mapped at chromosome 16p12-q12.This linkage has been confirmed by different authors. The chromosome 16 ICCA locus shows complicated genomic architecture and the ICCA gene remains unknown.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
While the true causes of Tietze's syndrome are not well understood, it often results from a physical strain or minor injury, such as repeated coughing, sneezing, vomiting, or impacts to the chest. It has even been known to occur after hearty bouts of laughter. It can occur by over exerting or by an injury in the chest and breast.
Psychological stress can exacerbate Tietze's syndrome, but there is no evidence to suggest that it is a direct cause.
Patients who have had radiation therapy to the chest/breast will often experience this syndrome which can occur shortly after therapy or years later.
It is found more often in teens than adults.
Patients with spinal accessory nerve palsy often exhibit signs of lower motor neuron disease such as diminished muscle mass, fasciculations, and partial paralysis of the sternocleidomastoid and trapezius muscles. Interruption of the nerve supply to the sternocleidomastoid muscle results in an asymmetric neckline, while weakness of the trapezius muscle can produce a drooping shoulder, winged scapula, and a weakness of forward elevation of the shoulder.
Medical procedures are the most common cause of injury to the spinal accessory nerve. In particular, radical neck dissection and cervical lymph node biopsy are among the most common surgical procedures that result in spinal accessory nerve damage. London notes that a failure to rapidly identify spinal accessory nerve damage may exacerbate the problem, as early intervention leads to improved outcomes.
The disorder has been associated with various mutations in the SLC52A2 and "SLC52A3" genes. This gene is thought to be involved in transport of riboflavin.
BVVL is allelic and phenotypically similar to Fazio–Londe disease and likewise is inherited in an autosomal recessive manner.
Although there is no definitive reporting on its incidence, acrocyanosis shows prevalence in children and young adults than in patients thirty years of age or older. Epidemiological data suggests that cold climate, outdoor occupation, and low body mass index are significant risk factors for developing acrocyanosis. As expected, acrocyanosis would be more prevalent in women than in men due to differences in BMI. However, the incidence rate of acrocyanosis often decreases with increasing age, regardless of regional climate. It completely resolves in many women after menopause implying significant hormonal influences.
Benign hereditary chorea (BHC), also known as benign familial chorea, is a rare autosomal dominant neurogenetic syndrome. It typically presents in childhood with isolated chorea. Unlike other neurogenetic causes of chorea such as Huntington's disease, BHC is not progressive, and not associated with cognitive decline or psychiatric problems in the vast majority of cases.
BHC is caused by a single-nucleotide insertion mutation in "TITF1", which encodes thyroid transcription factor 1 (TTF-1). This gene is also known as NK2 homeobox 1 (NKX2-1)
In some cases, additional developmental abnormalities of lung and thyroid tissue are found in BHC, leading to the suggested alternative name "brain-lung-thyroid syndrome".
Successful treatment of the associated underlying disorder, such as GORD or hiatus hernia, may provide relief.
Sandifer syndrome is not typically life-threatening and the prognosis is typically good.