Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
SCTC exhibits a highly aggressive phenotype, thus prognosis of that malignancy is extremely poor. The overall survival is less than 1 year in most of cases.
Parathyroid cancer occurs in midlife at the same rate in men and women.
Conditions that appear to result in an increased risk of parathyroid cancer include multiple endocrine neoplasia type 1, autosomal dominant familial isolated hyperparathyroidism and hyperparathyroidism-jaw tumor syndrome (which also is hereditary). Parathyroid cancer has also been associated with external radiation exposure, but, most reports describe an association between radiation and the more common parathyroid adenoma.
Multiple Endocrine Neoplasia type 1 (MEN1) is a rare hereditary endocrine cancer syndrome characterized primarily by tumors of the parathyroid glands (95% of cases), endocrine gastroenteropancreatic (GEP) tract (30-80% of cases), and anterior pituitary (15-90% of cases). Other endocrine and non-endocrine neoplasms including adrenocortical and thyroid tumors, visceral and cutaneous lipomas, meningiomas, facial angiofibromas and collagenomas, and thymic, gastric, and bronchial carcinoids also occur. The phenotype of MEN1 is broad, and over 20 different combinations of endocrine and non-endocrine manifestations have been described. MEN1 should be suspected in patients with an endocrinopathy of two of the three characteristic affected organs, or with an endocrinopathy of one of these organs plus a first-degree relative affected by MEN1 syndrome.
MEN1 patients usually have a family history of MEN1. Inheritance is autosomal dominant; any affected parent has a 50% chance to transmit the disease to his or her progeny. MEN1 gene mutations can be identified in 70-95% of MEN1 patients.
Many endocrine tumors in MEN1 are benign and cause symptoms by overproduction of hormones or local mass effects, while other MEN1 tumors are associated with an elevated risk for malignancy. About one third of patients affected with MEN1 will die early from an MEN1-related cancer or associated malignancy. Entero-pancreatic gastrinomas and thymic and bronchial carcinoids are the leading cause of morbidity and mortality. Consequently, the average age of death in untreated individuals with MEN1 is significantly lower (55.4 years for men and 46.8 years for women) than that of the general population.
A recommend surveillance program for Multiple Endocrine Neoplasia Type 1 has been suggested by the International Guidelines for Diagnosis and Therapy of MEN syndromes group.
Although the causes of craniopharyngioma is unknown, it can occur in both children and adults, with a peak in incidence at 9 to 14 years of age. There are approximately 120 cases diagnosed each year in the United States in patients under the age of 19 years old. In fact, more than 50% of all patients with craniopharyngioma are under the age of 18 years. There is no clear association of the tumor with a particular gender or race. It is not really known what causes craniopharyngiomas, but they do not appear to "run in families" or to be directly inherited from the parents.
When inherited, multiple endocrine neoplasia type 2 is transmitted in an autosomal dominant pattern, which means affected people have one affected parent, and possibly affected siblings and children. Some cases, however, result from spontaneous new mutations in the "RET gene". These cases occur in people with no family history of the disorder. In MEN2B, for example, about half of all cases arise as spontaneous new mutations.
Management of MEN2 patients includes thyroidectomy including cervical central and bilateral lymph nodes dissection for MTC, unilateral adrenalectomy for unilateral pheochromocytoma or bilateral adrenalectomy when both glands are involved and selective resection of pathologic parathyroid glands for primary hyperparathyroidism.
Familial genetic screening is recommended to identify at risk subjects who will develop the disease, permitting early management by performing prophylactic thyroidectomy, giving them the best chance of cure.
Prognosis of MEN2 is mainly related to the stage-dependant prognosis of MTC indicating the necessity of a complete thyroid surgery for index cases with MTC and the early thyroidectomy for screened at risk subjects.
Without treatment, persons with MEN2B die prematurely. Details are lacking, owing to the absence of formal studies, but it is generally assumed that death in the 30s is typical unless prophylactic thyroidectomy and surveillance for pheochromocytoma are performed (see below). The range is quite variable, however: death early in childhood can occur, and it is noteworthy that a few untreated persons have been diagnosed in their 50s. Recently, a larger experience with the disease "suggests that the prognosis in an individual patient may be better than previously considered."
Thyroidectomy is the mainstay of treatment, and should be performed without delay as soon as a diagnosis of MEN2B is made, even if no malignancy is detectable in the thyroid. Without thyroidectomy, almost all patients with MEN2B develop medullary thyroid cancer, in a more aggressive form than MEN 2A. The ideal age for surgery is 4 years old or younger, since cancer may metastasize before age 10.
Pheochromocytoma - a hormone secreting tumor of the adrenal glands - is also present in 50% of cases. Affected individuals are encouraged to get yearly screenings for thyroid and adrenal cancer.
Because prophylactic thyroidectomy improves survival, blood relatives of a person with MEN2B should be evaluated for MEN2B, even if lacking the typical signs and symptoms of the disorder.The mucosal neuromas of this syndrome are asymptomatic and self-limiting, and present no problem requiring treatment. They may, however, be surgically removed for aesthetic purposes or if they are being constantly traumatized.
An oncocytoma is a tumor made up of oncocytes, epithelial cells characterized by an excessive amount of mitochondria, resulting in an abundant acidophilic, granular cytoplasm. The cells and the tumor that they compose are often benign but sometimes may be premalignant or malignant.
Because Cowden syndrome can be difficult to diagnose, the exact prevalence is unknown; however, it probably occurs in at least 1 in 200,000 people.
A 2010 review of 211 patients (21 from one center, and the remaining 190 from the external literature) studied the risks for cancer and Lhermitte-Duclos disease in Cowden syndrome patients.
The cumulative lifetime (age 70 years) risks were 89% for any cancer diagnosis (95% confidence interval (CI) = 80%,95%), breast cancer [female] 81% (CI = 66%,90%), LDD 32% (CI = 19%,49%), thyroid cancer 21% (CI = 14%,29%), endometrial cancer 19% (CI = 10%,32%) and renal cancer 15% (CI = 6%,32%). A previously unreported increased lifetime risk for colorectal cancer was identified (16%, CI = 8%,24%). Male CS patients had fewer cancers diagnosed than female patients and often had cancers not classically associated with CS.
An endocrine gland neoplasm is a neoplasm affecting one or more glands of the endocrine system.
Examples include:
- Adrenal tumor
- Pituitary adenoma
The most common form is thyroid cancer.
Condition such as pancreatic cancer or ovarian cancer can be considered endocrine tumors, or classified under other systems.
Pinealoma is often grouped with brain tumors because of its location.
Hürthle cell adenoma is a rare benign tumor, typically seen in women between the ages of 70 and 80 years old. This adenoma is characterized by a mass of benign Hürthle cells (Askanazy cells). Typically such a mass is removed because it is not easy to predict whether it will transform into the malignant counterpart, a subtype of follicular thyroid cancer called a Hürthle cell carcinoma.
Variations in the RET proto-oncogene cause MEN2B. In recent decades no case of MEN2B has been reported that lacks such a variation. The M918T variant alone is responsible for approximately 95% of cases. All DNA variants that cause MEN2B are thought to enhance signaling through the RET protein, which is a receptor molecule found on cell membranes, whose ligands are part of the transforming growth factor beta signaling system.
About half of cases are inherited from a parent as an autosomal dominant trait. The other half appear to be spontaneous mutations, usually arising in the paternal allele, particularly from older fathers. The sex ratio in de novo cases is also uneven: sons are twice as likely to develop MEN 2B as daughters.
Parathyroid carcinoma is sometimes diagnosed during surgery for primary hyperparathyroidism. If the surgeon suspects carcinoma based on severity or invasion of surrounding tissues by a firm parathyroid tumor, aggressive excision is performed, including the thyroid and surrounding tissues as necessary.
Agents such as calcimimetics (for example, cinacalcet) are used to mimic calcium and are able to activate the parathyroid calcium-sensing receptor (making the parathyroid gland "think" we have more calcium than we actually do), therefore lowering the calcium level, in an attempt to decrease the hypercalcemia.
There are three main treatments for Hürthle cell adenomas. Once the adenoma is detected most often the nodules removed to prevent the cells from later metastisizing. A total thyroidectomy is often performed, this results in a complete removal of the thyroid. Some patients may only have half of their thyroid removed, this is known as a thyroid lobectomy. Another treatment option includes pharmacological suppression of thyroid hormone. The thyroid gland is responsible for producing the thyroid hormones triiodothyronine (T3) and thyroxine (T4). Patients with suppressed thyroid function often require oral thyroid replacement (e.g. levothyroxine) in order to maintain normal thyroid hormone levels. The final treatment option is RAI abaltion (radioactive iodine ablation). This treatment option is used to destroy infected thyroid cells after total thyroidectomy. This treatment does not change prognosis of disease, but will diminish the recurrence rate. Also, Hürthle cells do not respond well to RAI. However, often doctors suggest this treatment to patients with Hürthle cell adenoma and Hürthle cell carcinoma because some Hürthle cells will respond and it will kill remaining tissue.
Colloid nodules, also known as adenomatous nodules or colloid nodular goiter are benign, noncancerous enlargement of thyroid tissue. Although they may grow large, and there may be more than one, they are not malignant and they will not spread beyond the thyroid gland. Colloid nodules are the most common kind of thyroid nodule.
Craniopharyngiomas are generally benign but are known to recur after resection. Recent research has demonstrated a malignant (but rare) tendency of craniopharyngiomas. These malignant craniopharyngiomas are very rare, but are associated with poor prognosis.
Patients with thyroid oncocytomas present with a thyroid nodule, usually with normal thyroid function. If the tumor is big or invasive, there may be other symptoms such as difficulty swallowing or talking.
Thyroid neoplasm is a neoplasm or tumor of the thyroid. It can be a benign tumor such as thyroid adenoma, or it can be a malignant neoplasm (thyroid cancer), such as papillary, follicular, medullary or anaplastic thyroid cancer. Most patients are 25 to 65 years of age when first diagnosed; women are more affected than men. The estimated number of new cases of thyroid cancer in the United States in 2010 is 44,670 compared to only 1,690 deaths. Of all thyroid nodules discovered, only about 5 percent are cancerous, and under 3 percent of those result in fatalities.
The Hürthle cell is named after German histologist Karl Hürthle, who investigated thyroid secretory function, particularly in dogs. However, this is a misnomer since Hürthle actually described parafollicular C cells. The cell known as the Hürthle cell was first described in 1898 by Max Askanazy, who noted it in patients with Graves' disease.
Almost all thyroid adenomas are follicular adenomas. Follicular adenomas can be described as "cold", "warm" or "hot" depending on their level of function. Histopathologically, follicular adenomas can be classified according to their cellular architecture and relative amounts of cellularity and colloid into the following types:
- Fetal (microfollicular) - these have the potential for microinvasion. These consist of small, closely packed follicles lined with epithelium.
- colloid (macrofollicular) - these do "not" have any potential for microinvasion
- embryonal (atypical) - have the potential for microinvasion.
- Hürthle cell adenoma (oxyphil or oncocytic tumor) - have the potential for microinvasion.
- Hyalinizing trabecular adenoma
Papillary adenomas are very rare.
This is a very rare neoplasm accounting for approximately 0.0003% of all tumors and about 2.5% of all external ear neoplasms. There is a wide age range at initial presentation, although the mean age is about 50 years of age. Females are affected slightly more often (1.5:1).
A Hürthle cell () or Askanazy cell () is a cell in the thyroid that is often associated with Hashimoto's thyroiditis as well as benign and malignant tumors (Hürthle cell adenoma and Hürthle cell carcinoma, a subtype of follicular thyroid cancer). This version is a relatively rare form of differentiated thyroid cancer, accounting for only 3-10% of all differentiated thyroid cancers. Oncocytes in the thyroid are often called Hürthle cells. Although the terms oncocyte, oxyphilic cell, and Hürthle cell are used interchangeably, Hürthle cell is used only to indicate cells of thyroid follicular origin.
The treatment is simple excision and exclusion of a malignant neoplasm.
Sebaceous lymphadenoma is a tissue diagnosis, e.g. salivary gland biopsy.
It may be confused with a number of benign and malignant neoplasms, including Warthin tumour, mucoepidermoid carcinoma and sebaceous lymphadenocarcinoma.