Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The relative risk of breast cancer based on a median follow-up of 8 years, in a case control study of US registered nurses, is 3.7.
Nipple adenomas most commonly occur in 30- to 40-year-old women, but can also occur in men. They can also occur at any age, including in the elderly, in adolescence, and in infants.
A nipple adenoma is a type of intraductal papilloma that arises within the lactiferous ducts that are located within the nipple.
It occurs in all adult age groups. While the majority of patients are between 40 and 59 years old, age predilection is much less pronounced than in noninflammatory breast cancer. The overall rate is 1.3 cases per 100000, black women (1.6) have the highest rate, Asian and Pacific Islander women the lowest (0.7) rates.
Most known breast cancer risk predictors do not apply for inflammatory breast cancer. It may be slightly associated with cumulative breast-feeding duration.
They are the most common breast tumor in adolescent women. They also occur in a small number of post-menopausal women. Their incidence declines with increasing age, and, in general, they appear before the age of thirty years.
In breast pathology, pseudoangiomatous stromal hyperplasia, commonly abbreviated PASH, is an overgrowth of myofibroblastic cells and has an appearance similar to fibroadenomatoid changes.
The diagnostic significance is currently uncertain, but it appears to be benign. There have been cases of PASH diagnosed where the tumors co-exist with breast cancer. Other cases have made screening for breast cancer difficult and in some cases impossible due to the number and density of the existing PASH tumors. These cases have resulted in the necessity of a mastectomy and double mastectomy.
Most patients will develop flat, brownish spots (melanotic macules) on the skin, especially on the lips and oral mucosa, during the first year of life, and a patient’s first bowel obstruction due to intussusception usually occurs between the ages of six and 18 years. The cumulative lifetime cancer risk begins to rise in middle age. Cumulative risks by age 70 for all cancers, gastrointestinal (GI) cancers, and pancreatic cancer are 85%, 57%, and 11%, respectively.
A 2011 Dutch study followed 133 patients for 14 years. The cumulative risk for cancer was 40% and 76% at ages 40 and 70, respectively. 42 (32%) of the patients died during the study, of which 28 (67%) were cancer related. They died at a median age of 45. Mortality was increased compared with the general population.
A family with sinonasal polyposis were followed up for 28 years. Two cases of sinonasal type adenocarcinoma developed. This is a rare cancer. This report suggested that follow up of sinus polyps in this syndrome may be indicated.
Fibroadenomas, are benign breast tumours characterized by an admixture of stromal and epithelial tissue. Breasts are made of lobules (milk producing glands) and ducts (tubes that carry the milk to the nipple). These are surrounded by glandular, fibrous and fatty tissues. Fibroadenomas develop from the lobules. The glandular tissue and ducts grow over the lobule to form a solid lump.
Since both fibroadenomas, and breast lumps as a sign of breast cancer can appear similar, it is recommended to perform ultrasound analyses and possibly tissue sampling with subsequent histopathologic analysis in order to make a proper diagnosis. Unlike typical lumps from breast cancer, fibroadenomas are easy to move, with clearly defined edges.
Fibroadenomas are sometimes called breast mice or a breast mouse owing to their high mobility in the breast.
The management of PASH is controversial. Excision may be indicated in enlarging masses or lesions with atypical features.
They generally have a good prognosis. In one larger study, the 5-year and 10-year survival were over 90% and 80% respectively.
Because Cowden syndrome can be difficult to diagnose, the exact prevalence is unknown; however, it probably occurs in at least 1 in 200,000 people.
A 2010 review of 211 patients (21 from one center, and the remaining 190 from the external literature) studied the risks for cancer and Lhermitte-Duclos disease in Cowden syndrome patients.
The cumulative lifetime (age 70 years) risks were 89% for any cancer diagnosis (95% confidence interval (CI) = 80%,95%), breast cancer [female] 81% (CI = 66%,90%), LDD 32% (CI = 19%,49%), thyroid cancer 21% (CI = 14%,29%), endometrial cancer 19% (CI = 10%,32%) and renal cancer 15% (CI = 6%,32%). A previously unreported increased lifetime risk for colorectal cancer was identified (16%, CI = 8%,24%). Male CS patients had fewer cancers diagnosed than female patients and often had cancers not classically associated with CS.
Breast cancer risk is elevated for defined fraction of lesions. Except for patients with a strong family history of breast cancer, where the risk is two-fold, nonproliferative lesions have no increased risk. Proliferative lesions also have approximately a 2-fold risk. In particular, atypical hyperplasia is associated with an increased risk of developing breast cancer. Atypical lobular hyperplasia is associated with the greatest risk, approximately 5-fold and especially high relative risk of developing premenopausal breast cancer. Atypical ductal hyperplasia is associated with 2.4-fold risk. In contrast, a New England Journal of Medicine article states that for women with a strong familial history of breast cancer, the risk of future breast cancer is roughly doubled, independent of histological status. The article further states "The relative risk of breast cancer for the cohort was 1.56 (95 percent confidence interval, 1.45 to 1.68), and this increased risk persisted for at least 25 years after biopsy. The relative risk associated with atypia was 4.24 (95 percent confidence interval, 3.26 to 5.41), as compared with a relative risk of 1.88 (95 percent confidence interval, 1.66 to 2.12) for proliferative changes without atypia and of 1.27 (95 percent confidence interval, 1.15 to 1.41) for nonproliferative lesions. The strength of the family history of breast cancer, available for 4808 women, was a risk factor that was independent of histologic findings. No increased risk was found among women with no family history and nonproliferative findings. In the first 10 years after the initial biopsy, an excess of cancers occurred in the same breast, especially in women with atypia."
It is not well understood whether the lesions are precursors of breast cancer or only indication of increased risk, for most types of lesions the chance of developing breast cancer is nearly the same in the affected and unaffected breast (side) indicating only coincidence of risk factors. For atypical lobular hyperplasia there is high incidence of ipsilateral breast cancers indicating a possible direct carcinogenetic link.
Atypical ductal hyperplasia, abbreviated ADH, is the term used for a benign lesion of the breast that indicates an increased risk of breast cancer.
The name of the entity is descriptive of the lesion; ADH is characterized by cellular proliferation (hyperplasia) within one or two breast ducts and (histomorphologic) architectural abnormalities, i.e. the cells are arranged in an abnormal or atypical way.
In the context of a core (needle) biopsy, ADH is considered an indication for a breast lumpectomy, also known as a surgical (excisional) biopsy, to exclude the presence of breast cancer.
Smoking tobacco appears to increase the risk of breast cancer, with the greater the amount smoked and the earlier in life that smoking began, the higher the risk. In those who are long-term smokers, the risk is increased 35% to 50%. A lack of physical activity has been linked to about 10% of cases. Sitting regularly for prolonged periods is associated with higher mortality from breast cancer. The risk is not negated by regular exercise, though it is lowered.
There is an association between use of hormonal birth control and the development of premenopausal breast cancer, but whether oral contraceptives use may actually cause premenopausal breast cancer is a matter of debate. If there is indeed a link, the absolute effect is small. Additionally, it is not clear if the association exists with newer hormonal birth controls. In those with mutations in the breast cancer susceptibility genes "BRCA1" or "BRCA2", or who have a family history of breast cancer, use of modern oral contraceptives does not appear to affect the risk of breast cancer.
The association between breast feeding and breast cancer has not been clearly determined; some studies have found support for an association while others have not. In the 1980s, the abortion–breast cancer hypothesis posited that induced abortion increased the risk of developing breast cancer. This hypothesis was the subject of extensive scientific inquiry, which concluded that neither miscarriages nor abortions are associated with a heightened risk for breast cancer.
A number of dietary factors have been linked to the risk for breast cancer. Dietary factors which may increase risk include a high fat diet, high alcohol intake, and obesity-related high cholesterol levels. Dietary iodine deficiency may also play a role. Evidence for fiber is unclear. A 2015 review found that studies trying to link fiber intake with breast cancer produced mixed results. In 2016 a tentative association between low fiber intake during adolescence and breast cancer was observed.
Other risk factors include radiation and shift-work. A number of chemicals have also been linked, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents Although the radiation from mammography is a low dose, it is estimated that yearly screening from 40 to 80 years of age will cause approximately 225 cases of fatal breast cancer per million women screened.
In breast pathology, a radial scar of the breast, formally radial scar of the breast, is a benign breast lesion that can radiologically mimic malignancy, i.e. cancer.
Radial scar is associated with atypia and/or malignancy and may be an independent risk factor for the development of carcinoma in either breast.
Desmoid tumors may be classified as extra-abdominal, abdominal wall, or intra-abdominal (the last is more common in patients with FAP). It is thought that the lesions may develop in relation to estrogen levels or trauma/operations.
A 3' APC mutation is the most significant risk factor for intra-abdominal desmoid development amongst FAP patients. FAP patients presenting with an abdominal wall desmoid pre-operatively are at an increased risk of developing an intra-abdominal desmoid post-operatively.
Desmoid tumours of the breast are rare. Although benign, they can mimic breast cancer
on physical examination, mammography and breast ultrasound and can also be locally invasive. Even
though they occur sporadically, they can also be seen as a part of Gardner's syndrome. A high index of suspicion and a thorough triple examination protocol is necessary to detect rare lesions like a desmoid tumour which can masquerade as breast carcinoma. Desmoid tumour of the breast may present a difficulty in the diagnosis especially where imaging studies are not conclusive and suggest a more ominous diagnosis.
An adenomyoepithelioma of the breast, also adenomyoepithelioma, is a rare tumour in the breast composed of glandular elements (adeno-) and myoepithelial cells. It is usually benign; however, there are reports of malignant behaviour.
The histomorphologic appearance can mimic invasive ductal carcinoma, the most common type of invasive breast cancer.
Epithelial-myoepithelial carcinoma, abbreviated EMCa, is a rare malignant tumour that typically arises in a salivary gland and consists of both an epithelial and myoepithelial component. They are predominantly found in the parotid gland
and represent approximately 1% of salivary gland tumours.
Risk factors can be divided into two categories:
- "modifiable" risk factors (things that people can change themselves, such as consumption of alcoholic beverages), and
- "fixed" risk factors (things that cannot be changed, such as age and biological sex).
The primary risk factors for breast cancer are being female and older age. Other potential risk factors include genetics, lack of childbearing or lack of breastfeeding, higher levels of certain hormones, certain dietary patterns, and obesity. Recent studies have indicated that exposure to light pollution is a risk factor for the development of breast cancer.
Aggressive fibromatosis is a rare condition marked by the presence of desmoid tumors. Desmoid tumors can arise in virtually any part of the body, and are tumors that arise from cells called fibroblasts, which are found throughout the body and provide structural support, protection to the vital organs, and play a critical role in wound healing. These tumors tend to occur in women in their thirties, but can occur in anyone at any age. They can be either relatively slow-growing or malignant. However, aggressive fibromatosis is locally aggressive. When they are aggressive they can cause life-threatening problems or even death when they compress vital organs such as intestines, kidney, lungs, blood vessels, nerves etc. Most cases are sporadic, but some are associated with familial adenomatous polyposis (FAP). Approximately 10% of individuals with Gardner's syndrome, a type of FAP with extracolonic features, have desmoid tumors.
Histologically they resemble very low-grade fibrosarcomas, but they are very locally aggressive and tend to recur even after complete resection. There is a tendency for recurrence in the setting of prior surgery; in one study, two-thirds of patients with desmoid tumors had a history of prior abdominal surgery.
Risk factors for desmoid disease amongst FAP patients include female sex, a 3' APC mutation, a positive family history and a history of previous abdominal surgery.
A number of genes are associated with HBOC. The most common of the known causes of HBOC are:
- BRCA mutations: Harmful mutations in the "BRCA1" and "BRCA2" genes can produce very high rates of breast and ovarian cancer, as well as increased rates of other cancers.
Other identified genes include:
- "TP53": Mutations cause Li-Fraumeni syndrome. It produces particularly high rates of breast cancer among younger women with mutated genes, and despite being rare, 4% of women with breast cancer under age 30 have a mutation in this gene.
- "PTEN": Mutations cause Cowden syndrome, which produces hamartomas (benign polyps) in the colon, skin growths, and other clinical signs, as well as an increased risk for many cancers.
- "CDH1": Mutations are associated with lobular breast cancer and gastric cancer.
- "STK11": Mutations produce Peutz–Jeghers syndrome. It is extremely rare, and creates a predisposition to breast cancer, intestinal cancer, and pancreatic cancer.
- "CHEK2": Approximately one out of 40 northern Europeans have a mutation in this gene, making it a common mutation. Considered a moderate-risk mutation, it may double or triple the carrier's lifetime risk of breast cancer, and also increase the risk of colon cancer and prostate cancer.
- "ATM": Mutations cause ataxia telangectasia; female carriers have approximately double the normal risk of developing breast cancer.
- "PALB2": Studies vary in their estimate of the risk from mutations in this gene. It may be moderate risk, or as high as "BRCA2".
Approximately 45% of HBOC cases involve unidentified genes, or multiple genes.
Intraductal papillomas of the breast are benign lesions with an incidence of approximately 2-3% in humans.
Two types of intraductal papillomas are generally distinguished. The central type develops near the nipple. They are usually solitary and often arise in the period nearing menopause. On the other hand, the peripheral type are often multiple papillomas arising at the peripheral breasts, and are usually found in younger women. The peripheral type are associated with a higher risk of malignancy.
They are the most common cause of bloody nipple discharge in women age 20-40 and generally do not show up on mammography due to their small size. They may be detectable on ultrasound. A galactogram is the most definitive test but is somewhat invasive.
The masses are often too small to be palpated or felt. A galactogram is therefore necessary to rule out the lesion.
Excision is sometimes performed. Microdochectomy/microdochotomy (removal of a breast duct) is the treatment of choice.
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
Atypical hyperplasia is a high-risk premalignant lesion of the breast. It is believed that atypical ductal hyperplasia (ADH) is a direct precursor for low-grade mammary ductal carcinoma, whereas atypical lobular hyperplasia (ALH) serves as a risk indicator.
These tumors are painless masses that manifest as breast lumps and may be found on a mammogram.