Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no information on birth ratios/rates, but "X-Linked SCID is the most common form of SCID and it has been estimated to account for 46% to 70% of all SCID cases."
CD25 deficiency or interleukin 2 receptor alpha deficiency is an immunodeficiency disorder associated with mutations in the interleukin 2 receptor alpha (CD25) (IL2RA) gene. The mutations cause expression of a defective α chain or complete absence thereof, an essential part of high-affinity interleukin-2 (IL-2) receptors. The result is a syndrome described as IPEX-like or a SCID.
In one patient, deficiency of CD25 on CD4+ lymphocytes caused significantly impaired sensitivity to IL-2. This was demonstrated by a lack of measurable response in anti-inflammatory interleukin-10 (IL-10) secretion to low-dose IL-2 incubation. Greatly reduced IL-10 secretion compared to healthy humans results in a syndrome comparable to IPEX syndrome, a type of autoimmunity which is caused by FoxP3 transcription factor dysfunction. In addition to IPEX-like symptoms, CD25 deficiency increases susceptibility to viral infections and possibly fungal and bacterial infections.
As IL-2 is an important inducer of lymphocyte proliferation, the absence of highly sensitive IL-2 receptors may also significantly hinder activation and clonal expansion of CD8+ and CD4+ lymphocytes and NK cells. One case also reported the absence of CD1, a MHC-like glycoprotein involved in the presentation of lipid antigens to T cells, in a CD25 deficient patient. Furthermore, chronic upregulation of anti-apoptotic Bcl-2 in thymocytes was also described possibly allowing autoreactive T cells to escape deletion.
X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells. In the absence of T cell help, B cells become defective. It is an x-linked recessive trait, stemming from a mutated (abnormal) version of the IL2-RG gene located at xq13.1 on the X-chromosome, which is shared between receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
Autoimmune lymphoproliferative syndrome (ALPS), also known as Canale-Smith syndrome, is a form of lymphoproliferative disorder (LPDs). It affects lymphocyte apoptosis. It is a RASopathy.
It is a rare genetic disorder of abnormal lymphocyte survival caused by defective Fas mediated apoptosis. Normally, after infectious insult, the immune system down-regulates by increasing Fas expression on activated B and T lymphocytes and Fas-ligand on activated T lymphocytes. Fas and Fas-ligand interact to trigger the caspase cascade, leading to cell apoptosis. Patients with ALPS have a defect in this apoptotic pathway, leading to chronic non-malignant lymphoproliferation, autoimmune disease, and secondary cancers.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.
The bare lymphocyte syndrome, type II (BLS II) is a rare recessive genetic condition in which a group of genes called major histocompatibility complex class II (MHC class II) are not expressed.
The result is that the immune system is severely compromised and cannot effectively fight infection. Clinically, this is similar to severe combined immunodeficiency (SCID), in which lymphocyte precursor cells are improperly formed. As a notable contrast, however, bare lymphocyte syndrome does not result in decreased B- and T-cell counts, as the development of these cells is not impaired.
Diarrhea can be among the associated conditions.
Hypergammaglobulinemia is a medical condition with elevated levels of gamma globulin.
It is a type of immunoproliferative disorder.
Primary immunodeficiency diseases are inborn errors in the immune system due to defective genes. Certain of these disorders are sometimes or often associated with hypereosinophilia. The list of such diorders includes ZAP70 deficiency (defective "ZAP70" gene), CD3gamma chain deficiency (defective "CD3G" gene), MCHII deficiency (defective "RFXANK" gene), Wiskott–Aldrich syndrome (defective "WAS" gene), IPEX syndrome (defective "IPEX" gene), "CD40" gene defect, and autoimmune lymphoproliferative syndrome (defective "Fas receptor" gene). More than 30 other primary immunodeficiency diseases are sometimes associated with modest increases in eosinophil counts, i.e. eosinophilia. The hyperimmunoglobulin E syndrome is associated with hypereosionphilia or eosinophilia due to mutations in any one of the following genes: "STAT3, DOCK8, PGM3, SPINK5", and "TYK2" (see mutations in the hymperimmoglobulin E syndrome). Omenn syndrome is a severe combined immuodeficiency disease characterized by skin rash, slenomegaly, and lymphadenopathy due to a causative mutation in "RAG1, RAG2]]", or, more rarely, one of several other genes.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Helminths are common causes of hypereosiophilia and eosinophilia in areas endemic to these parasites. Helminths infections causing increased blood eosinophil counts include: 1) nematodes, (i.e. "Angiostrongylus cantonensis" and Hookworm infections), ascariasis, strongyloidiasis trichinosis, visceral larva migrans, Gnathostomiasis, cysticercosis, and echinococcosis; 2) filarioidea, i.e. tropical pulmonary eosinophilia, loiasis, and onchocerciasis; and 3) flukes, i.e. shistosomiasis, fascioliasis, clonorchiasis, paragonimiasis, and fasciolopsiasis. Other infections associated with increased eosinophil blood counts include: protozoan infections, i.e. "Isospora belli" and "Dientamoeba fragilis") and sarcocystis); fungal infections (i.e. disseminated histoplasmosis, cryptococcosis especially in cases with [[central nervous system]] involvement), and coccidioides); and viral infections, i.e. Human T-lymphotropic virus 1 and HIV.
Hypergammaglobulinemia is a condition that is characterized by the increased levels of a certain immunoglobulin in the blood serum. The name of the disorder refers to an excess of proteins after serum protein electrophoresis (found in the gammaglobulin region).
Most hypergammaglobulinemias are caused by an excess of immunoglobulin M (IgM), because this is the default immunoglobulin type prior to class switching. Some types of hypergammaglobulinemia are actually caused by a deficiency in the other major types of immunoglobulins, which are IgA, IgE and IgG.
There are 5 types of hypergammaglobulinemias associated with hyper IgM.
MeSH considers hyper IgM syndrome to be a form of dysgammaglobulinemia, not a form of hypergammaglobulinemia .
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
The 5 year survival has been noted as 89% in at least one study from France of 201 patients with T-LGL leukemia.
The most common cause of temporary lymphocytopenia is a recent infection, such as the common cold.
Lymphocytopenia, but not idiopathic CD4+ lymphocytopenia, is associated with corticosteroid use, infections with HIV and other viral, bacterial, and fungal agents, malnutrition, systemic lupus erythematosus, severe stress, intense or prolonged physical exercise (due to cortisol release), rheumatoid arthritis, sarcoidosis, and iatrogenic (caused by other medical treatments) conditions.
Lymphocytopenia is a frequent, temporary result from many types of chemotherapy, such as with cytotoxic agents or immunosuppressive drugs. Some malignancies that have spread to involve the bone marrow, such as leukemia or advanced Hodgkin's disease, also cause lymphocytopenia.
Another cause is infection with Influenza A virus subtype H1N1 (and other subtypes of the Influenza A virus) and is then often associated with Monocytosis; H1N1 was responsible for the Spanish flu, the 2009 flu pandemic and in 2016 for the Influenza-epidemic in Brazil.
Large doses of radiation, such as those involved with nuclear accidents or medical whole body radiation, may cause lymphocytopenia.
All people with ALPS have signs of lymphoproliferation, which makes it the most common clinical manifestation of the disease. The increased proliferation of lymphoid cells can cause the size of lymphoid organs such as the lymph nodes and spleen to increase (lymphadenopathy and splenomegaly, present in respectively over 90% and over 80% of patients). The liver is enlarged (hepatomegaly in 30 - 40% of patients).
Autoimmune disease is the second most common clinical manifestation and one that most often requires treatment. Autoimmune cytopenias: Most common. Can be mild to very severe. Can be intermittent or chronic. These include: Autoimmune hemolytic anemia, Autoimmune neutropenia, Autoimmune thrombocytopenia.
Other signs can affect organ systems similar to systemic lupus erythematosus (least common, affecting <5% of patients) Symptoms of the nervous system include: Autoimmune cerebellar ataxia; Guillain–Barré syndrome; transverse myelitis. Gastrointestinal signs like Autoimmune esophagitis, gastritis, colitis, hepatitis, pancreatitis can be found or (Dermatologic) Urticaria, (Pulmonary) bronchiolitis obliterans, (Renal) Autoimmune glomerulonephritis, nephrotic syndrome.
Another sign are cancers such as Hodgkin and non-Hodgkin lymphomas which appear to be increased, possibly due to Epstein–Barr virus-encoded RNA-positivity. Some carcinomas may occur. Unaffected family members with genetic mutations are also at an increased risk of developing cancer.
Lymphocytosis is a feature of infection, particularly in children. In the elderly, lymphoproliferative disorders, including chronic lymphocytic leukaemia and lymphomas, often present with lymphadenopathy and a lymphocytosis.
Causes of absolute lymphocytosis include:
- acute viral infections, such as infectious mononucleosis (glandular fever), hepatitis and Cytomegalovirus infection
- other acute infections such as pertussis
- some protozoal infections, such as toxoplasmosis and American trypanosomiasis (Chagas disease)
- chronic intracellular bacterial infections such as tuberculosis or brucellosis
- chronic lymphocytic leukemia
- acute lymphoblastic leukemia
- lymphoma
- post-splenectomy state
- smoking
Causes of relative lymphocytosis include: age less than 2 years; acute viral infections; connective tissue diseases, thyrotoxicosis, Addison's disease, and splenomegaly with splenic sequestration of granulocytes.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
A lymphocyte is one of the subtypes of white blood cell in a vertebrate's immune system. Lymphocytes include natural killer cells (Phagocytes) (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adaptive immunity), and B cells (for humoral, antibody-driven adaptive immunity). They are the main type of cell found in lymph, which prompted the name "lymphocyte".
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
Because the CD18 gene has been cloned and sequenced, this disorder is a potential candidate for gene therapy.
Lymphocytopenia caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections is treated with Lymphocyte T-Cell Immune Modulator.
T-LGLL is a rare form of leukemia, comprising 2-3% of all cases of chronic lymphoproliferative disorders.
X-linked lymphoproliferative disease (also known as "Duncan's disease" or "Purtilo syndrome") is a lymphoproliferative disorder.
Strangely, in boys with X-linked lymphoproliferative disorder, there is an inability to mount an immune response to the Epstein-Barr virus (EBV), which often leads to death from bone marrow failure, irreversible hepatitis, and malignant lymphoma. However, the connection between EBV and X-linked lymphoproliferative disorder is yet to be determined.
Patients produce insufficient numbers of CD27 memory B cells.