Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following are precautionary measures that can be taken to avoid the spread of bagassosis:
1. Dust control-prevention /suppression of dust such as wet process, enclosed apparatus, exhaust ventilation etc. should be used
2. Personal protection- masks/ respirators
3. Medical control- initial medical examination & periodical checkups of workers
4. Bagasse control- keep moisture content above 20% and spray bagasse with 2% propionic acid
Bagassosis has been shown to be due to a thermophilic actinomycetes for which the name thermoactinomycetes sacchari was suggested.
Regardless of cause, UIP is relentlessly progressive, usually leading to respiratory failure and death without a lung transplant. Some patients do well for a prolonged period of time, but then deteriorate rapidly because of a superimposed acute illness (so-called "accelerated UIP"). The outlook for long-term survival is poor. In most studies, the median survival is 3 to 4 years. Patients with UIP in the setting of rheumatoid arthritis have a slightly better prognosis than UIP without a known cause (IPF).
SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, 1.8% of combat swimmers and 1.1% of divers and swimmers reported in the literature.
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
Lycoperdonosis is a respiratory disease caused by the inhalation of large amounts of spores from mature puffballs. It is classified as a hypersensitivity pneumonitis (also called extrinsic allergic alveolitis)—an inflammation of the alveoli within the lung caused by hypersensitivity to inhaled natural dusts. It is one of several types of hypersensitivity pneumonitis caused by different agents that have similar clinical features. Typical progression of the disease includes symptoms of a cold hours after spore inhalation, followed by nausea, rapid pulse, crepitant rales (a sound like that made by rubbing hairs between the fingers, heard at the end of inhalation), and dyspnea. Chest radiographs reveal the presence of nodules in the lungs. The early symptoms presented in combination with pulmonary abnormalities apparent on chest radiographs may lead to misdiagnosis of the disease as tuberculosis, histiocytosis, or pneumonia caused by "Pneumocystis carinii". Lycoperdonosis is generally treated with corticosteroids, which decrease the inflammatory response; these are sometimes given in conjunction with antimicrobials.
The disease was first described in the medical literature in 1967 by R.D. Strand and colleagues in the "New England Journal of Medicine". In 1976, a 4-year-old was reported developing the disease in Norway after purposely inhaling a large quantity of "Lycoperdon" spores to stop a nosebleed. "Lycoperdon" species are sometimes used in folk medicine in the belief that their spores have haemostatic properties. A 1997 case report discussed several instances of teenagers inhaling the spores. In one severe case, the individual inhaled enough spores so as to be able to blow them out of his mouth. He underwent bronchoscopy and then had to be on life support before recovering in about four weeks. In another instance, a teenager spent 18 days in a coma, had portions of his lung removed, and suffered severe liver damage. In Wisconsin, eight teenagers who inhaled spores at a party presented clinical symptoms such as cough, fever, shortness of breath, myalgia, and fatigue within a week. Five of the eight required hospitalization; of these, two required intubation to assist in breathing. The disease is rare, possibly because of the large quantity of spores that need to be inhaled for clinical effects to occur. Lycoperdonosis also occurs in dogs; in the few reported cases, the animals had been playing or digging in areas known to contain puffballs. Known species of puffballs implicated in the etiology of the published cases include the widespread "Lycoperdon perlatum" (the "devil's snuff-box", "L. gemmatum") and "Calvatia gigantea", both of the Lycoperdaceae family.
Hypersensitivity pneumonitis may also be called many different names, based on the provoking antigen. These include:
Of these types, Farmer's Lung and Bird-Breeder's Lung are the most common. "Studies document 8-540 cases per 100,000 persons per year for farmers and 6000-21,000 cases per 100,000 persons per year for pigeon breeders. High attack rates are documented in sporadic outbreaks. Prevalence varies by region, climate, and farming practices. HP affects 0.4–7% of the farming population. Reported prevalence among bird fanciers is estimated to be 20-20,000 cases per 100,000 persons at risk."
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
Many cases of restrictive lung disease are idiopathic (have no known cause). Still, there is generally pulmonary fibrosis. Examples are:
- Idiopathic pulmonary fibrosis
- Idiopathic interstitial pneumonia, of which there are several types
- Sarcoidosis
- Eosinophilic pneumonia
- Lymphangioleiomyomatosis
- Pulmonary Langerhans' cell histiocytosis
- Pulmonary alveolar proteinosis
Conditions specifically affecting the interstitium are called interstitial lung diseases.
Restrictive lung diseases may be due to specific causes which can be intrinsic to the parenchyma of the lung, or extrinsic to it.
The differential diagnosis includes other types of lung disease that cause similar symptoms and show similar abnormalities on chest radiographs. Some of these diseases cause fibrosis, scarring or honeycomb change. The most common considerations include:
- chronic hypersensitivity pneumonitis
- non-specific interstitial pneumonia
- sarcoidosis
- pulmonary Langerhans cell histiocytosis
- asbestosis
Initially, the disease appears as alveolitis, and then progresses to emphysema.
Patients may develop pneumothorax (collapsed lung).
The illness is generally self-limiting. Management on the whole is preventative, by limiting exposure to mouldy environments with ventilation, or by wearing respiratory protection such as facemasks.
Bronchomalacia can best be described as a birth defect of the bronchus in the respiratory tract. Congenital malacia of the large airways is one of the few causes of irreversible airways obstruction in children, with symptoms varying from recurrent wheeze and recurrent lower airways infections to severe dyspnea and respiratory insufficiency. It may also be acquired later in life due to chronic or recurring inflammation resulting from infection or other airway disease.
Bauxite pneumoconiosis, also known as Shaver's disease, corundum smelter's lung, bauxite lung or bauxite smelters' disease, is a progressive form of pneumoconiosis usually caused by occupational exposure to bauxite fumes which contain aluminium and silica particulates.
It is typically seen in workers involved in the smelting of bauxite to produce corundum.
An inflammatory reaction of the airways and alveoli, the mechanism of organic dust toxic syndrome is thought to be toxic rather than autoimmune in origin. The airways are exposed to high concentrations of organic dust created by some form of disturbance or mechanical process. They can be such materials such as grain kernel fragments, bits of insects, bacteria, fungal spores, molds or chemical residues, the individual particles 0.1 to 50 µm in size. A common scenario is exposure to moldy grain, hay or woodchips, with farmers and pig workers the most common occupations affected. Those who work with grain, poultry and mushrooms also frequently report symptoms.
Bronchomalacia is a term for weak cartilage in the walls of the bronchial tubes, often occurring in children under six months. Bronchomalacia means 'floppiness' of some part of the bronchi. Patients present with noisy breathing and/or wheezing. There is collapse of a main stem bronchus on exhalation. If the trachea is also involved the term tracheobronchomalacia (TBM) is used. If only the upper airway the trachea is involved it is called tracheomalacia (TM). There are two types of bronchomalacia. Primary bronchomalacia is due to a deficiency in the cartilaginous rings. Secondary bronchomalacia may occur by extrinsic compression from an enlarged vessel, a vascular ring or a bronchogenic cyst. Though uncommon, idiopathic (of unknown cause) tracheobronchomalacia has been described in older adults.
Infants may develop respiratory symptoms as a result of exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and/or wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to "Penicillium". The levels are deemed ‘no mold’ to ‘low level’ , from ‘low’ to ‘intermediate’ , and from ‘intermediate’ to ‘high’.
Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause a number of health issues such as; throat irritation, nasal stuffiness, eye irritation, cough and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses, which will result in more severe reactions when exposed to mold.
There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.
If the symptoms are severe enough, treatment may be needed. These range from medical management over mechanical ventilation (both continuous positive airway pressure (CPAP), or bi-level positive airway pressure (BiPAP) to tracheal stenting and surgery.
Surgical techniques include aortopexy, tracheopexy, tracheobronchoplasty, and tracheostomy. The role of the nebulised recombinant human deoxyribonuclease (rhDNase) remains inconclusive.
The following are causes of BHL:
- Sarcoidosis
- Infection
- Tuberculosis
- Fungal infection
- Mycoplasma
- Intestinal Lipodystrophy (Whipple's disease)
- Malignancy
- Lymphoma
- Carcinoma
- Mediastinal tumors
- Inorganic dust disease
- Silicosis
- Berylliosis
- Extrinsic allergic alveolitis
- Such as bird fancier's lung
- Less common causes also exist:
- Eosinophilic granulomatosis with polyangiitis
- Human immunodeficiency virus
- Extrinsic allergic alveolitis
- Adult-onset Still's disease
Symptoms of mold exposure can include:
- Nasal and sinus congestion, runny nose
- Respiratory problems, such as wheezing and difficulty breathing, chest tightness
- Cough
- Throat irritation
- Sneezing / Sneezing fits
There are three types of tracheomalacia:
- Type 1—congenital, sometimes associated with tracheoesophageal fistula or esophageal atresia
- Type 2—extrinsic compression sometimes due to vascular rings
- Type 3—acquired due to chronic infection or prolonged intubation or inflammatory conditions like relapsing polychondritis
Sick building syndrome can also occur due to factors of the home. Laminated flooring can cause more exposure to chemicals and more resulting SBS symptoms compared to stone, tile, and cement flooring. Recent redecorating and new furnishings within the last year were also found to be associated with increased symptoms, along with dampness and related factors, having pets, and the presence of cockroaches. The presence of mosquitoes was also a factor related to more symptoms, though it is unclear whether it was due to the presence of mosquitoes or the use of repellents.
Greater effects were found with features of the psychosocial work environment including high job demands and low support. The report concluded that the physical environment of office buildings appears to be less important than features of the psychosocial work environment in explaining differences in the prevalence of symptoms. However, there is still a relationship between sick building syndrome and symptoms of workers regardless of workplace stress.
Excessive work stress or dissatisfaction, poor interpersonal relationships and poor communication are often seen to be associated with SBS, recent studies show that a combination of environmental sensitivity and stress can greatly contribute to sick building syndrome.
Specific work-related stressors are related with specific SBS symptoms. Workload and work conflict are significantly associated with general symptoms (headache, abnormal tiredness, sensation of cold or nausea). While crowded workspaces and low work satisfaction are associated with upper respiratory symptoms.
Engineers are often affected by sick building syndrome. One studied case is that of Stephen Danielson, who typically has the ailment for 6 months out of the year. It manifests as a wheeze, commonly known as the Danielson Wheeze.
Specific careers are also associated with specific SBS symptoms. Transport, communication, healthcare, and social workers have highest prevalence of general symptoms. Skin symptoms such as eczema, itching, and rashes on hands and face are associated with technical work. Forestry, agriculture, and sales workers have the lowest rates of sick building syndrome symptoms.
Milton et al. determined the cost of sick leave specific for one business was an estimated $480 per employee, and about five days of sick leave per year could be attributed to low ventilation rates. When comparing low ventilation rate areas of the building to higher ventilation rate areas, the relative risk of short-term sick leave was 1.53 times greater in the low ventilation areas.
Work productivity has been associated with ventilation rates, a contributing factor to SBS, and there's a significant increase in production as ventilation rates increase, by 1.7% for every two-fold increase of ventilation rate.
Bilateral hilar lymphadenopathy is a bilateral enlargement of the lymph nodes of pulmonary hila. It is a radiographic term that describes the enlargement of mediastinal lymph nodes and is most commonly identified by a chest x-ray.